問題背景:某課外學習小組在一次學習研討中,得到如下兩個命題:
①如圖1,在正三角形ABC中,M、N分別是AC、AB上的點,BM與CN相交于點O,若∠BON=60°,則BM=CN。
②如圖2,在正方形ABCD中,M、N分別是CD、AD上的點,BM與CN相交于點O,若∠BON=90°,則BM=CN。
然后運用類比的思想提出了如下的命題:
③如圖3,在正五邊形ABCDE中,M、N分別是CD、DE上的點,BM與CN相交于點O,若∠BON=108°,則BM=CN。
任務要求:
(1)請你從①、②、③三個命題中選擇一個進行證明;
(2)請你繼續(xù)完成下面的探索:
①如圖4,在正n(n≥3)邊形ABCDEF…中,M、N分別是CD、DE上的點,BM與CN相交于點O,問當∠BON等于多少度時,結論BM=CN成立?(不要求證明)
②如圖5,在五邊形ABCDE中,M、N分別是DE、AE上的點,BM與CN相交于點O,當∠BON=108°時,請問結論BM=CN是否還成立?若成立,請給予證明;若不成立,請說明理由。
(1)我選
證明:

解:(1)選命題① 證明:
在圖1中,∵∠BON=60°,
∴∠CBM+∠BCN=60°,
∵∠BCN+∠ACN=60°,
∴∠CBM=∠ACN,
又∵BC=CA,∠BCM=∠CAN=60°,
∴△BCM≌△CAN,
∴BM=CN,
選命題②,證明:在圖2中,
∵∠BON=90°,
∴∠CBM+∠BCN=90°,
∵∠BCN+∠DCN=90°,
∴∠CBM=∠DCN,
又∵BC=CD,∠BCM=∠CDN=90°,
∴△BCM≌△CDN,
∴BM=CN,
選命題③證明:在圖3中,
∵∠BON=108°,
∴∠CBM+∠BCN=108°,
∵∠BCN+∠DCN=108°,
∴∠CBM=∠DCN,
又∵BC=CD,∠BCM=∠CDN=108°,
∴△BCM≌△CDN,
∴BM=CN;
(2)①當∠BON=時,結論BM=CN成立,
②BM=CN成立,
證明:如圖5,連結BD、CE,
在△BCD和△CDE中,
∵BC=CD,∠BCD=∠CDE=108°,CD=DE,
∴△BCD≌△CDE,
∴BD=CE,∠BDC=∠CED,∠DBC=∠ECD,
∵∠OBC+∠OCB=108°,∠OCB+∠OCD=108°,
∴∠MBC=∠NCD,
又∵∠DBC=∠ECD=36°,
∴∠DBM=∠ECN,
∴△BDM≌△ECN。




練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

24、問題背景:某課外學習小組在一次學習研討中,得到了如下命題:
如圖①,在正五邊形ABCDE中,M、N分別是CD、DE上的點,BM與CN相交于點O,若CM=DN,則∠BON=108°.
該小組提出了一個大膽的猜想:如圖②,在正五邊形ABCDE中,M、N分別是DE、EA上的點,BM與CN相交于點O,若DM=EN,則∠BON=108°.
請問他們的猜想是否正確?若正確,請寫出解答過程;若不正確,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

問題背景:某課外學習小組在一次學習研討中,得到了如下兩個命題:
精英家教網精英家教網
①如圖1,在正三角形ABC中,M,N分別是AC,AB上的點,BM與CN相交于點O,若∠BON=60°,則BM=CN;
②如圖2,在正方形ABCD中,M,N分別是CD,AD上的點,BM與CN相交于點O,若∠BON=90°,則BM=CN.
然后運用類比的思想提出了如下命題;
③如圖3,在正五邊形ABCDE中,M,N分別是CD,DE上的點,BM與CN相交于點O,若∠BON=108°,則BM=CN.任務要求:
(1)請你從①,②,③三個命題中選擇一個進行證明;
(2)請你繼續(xù)完成下面的探索:
①如圖4,在正n(n≥3)邊形ABCDEF…中,M,N分別是CD,DE上的點,BM與CN相交于點O,試問當∠BON等于多少度時,結論BM=CN成立;(不要求證明)
②如圖5,在正五邊形ABCDE中,M,N分別是DE,AE上的點,BM與CN相交于點O,若∠BON=108°時,試問結論BM=CN是否還成立.若成立,請給予證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、問題背景:某課外學習小組在一次學習研討中,得到了如下兩個命題:
Ⅰ.如圖①,在正三角形△ABC中,M、N分別是AC、AB上的點,BM與CN相交于點O,若∠BON=60°,則BM=CN.
Ⅱ.如圖②,在正方形ABCD中,M、N分別是CD、AD上的點,BM與CN相交于點O,若∠BON=90°,則BM=CN.
任務要求:
(1)請你從Ⅰ、Ⅱ兩個命題中選擇一個進行證明.
(2)如圖,在正五邊形ABCDE中,M、N分別是CD、DE上的點,BM與CN相交于點O,若∠BON=108°,請問結論BM=CN是否還成立?若成立,請給予證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

問題背景:某課外學習小組在一次學習研討中,得到了如下兩個命題:

①如圖1,在正三角形ABC中,M,N分別是AC,AB上的點,BM與CN相交于點O,若∠BON=60°,則BM=CN;
②如圖2,在正方形ABCD中,M,N分別是CD,AD上的點,BM與CN相交于點O,若∠BON=90°,則BM=CN.
然后運用類比的思想提出了如下命題;
③如圖3,在正五邊形ABCDE中,M,N分別是CD,DE上的點,BM與CN相交于點O,若∠BON=108°,則BM=CN.任務要求:
(1)請你從①,②,③三個命題中選擇一個進行證明;
(2)請你繼續(xù)完成下面的探索:
①如圖4,在正n(n≥3)邊形ABCDEF…中,M,N分別是CD,DE上的點,BM與CN相交于點O,試問當∠BON等于多少度時,結論BM=CN成立;(不要求證明)
②如圖5,在正五邊形ABCDE中,M,N分別是DE,AE上的點,BM與CN相交于點O,若∠BON=108°時,試問結論BM=CN是否還成立.若成立,請給予證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年江西省中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2006•江西)問題背景:某課外學習小組在一次學習研討中,得到了如下兩個命題:

①如圖1,在正三角形ABC中,M,N分別是AC,AB上的點,BM與CN相交于點O,若∠BON=60°,則BM=CN;
②如圖2,在正方形ABCD中,M,N分別是CD,AD上的點,BM與CN相交于點O,若∠BON=90°,則BM=CN.
然后運用類比的思想提出了如下命題;
③如圖3,在正五邊形ABCDE中,M,N分別是CD,DE上的點,BM與CN相交于點O,若∠BON=108°,則BM=CN.任務要求:
(1)請你從①,②,③三個命題中選擇一個進行證明;
(2)請你繼續(xù)完成下面的探索:
①如圖4,在正n(n≥3)邊形ABCDEF…中,M,N分別是CD,DE上的點,BM與CN相交于點O,試問當∠BON等于多少度時,結論BM=CN成立;(不要求證明)
②如圖5,在正五邊形ABCDE中,M,N分別是DE,AE上的點,BM與CN相交于點O,若∠BON=108°時,試問結論BM=CN是否還成立.若成立,請給予證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案