(2012•山西)如圖,為了開發(fā)利用海洋資源,某勘測飛機(jī)預(yù)測量一島嶼兩端A、B的距離,飛機(jī)在距海平面垂直高度為100米的點C處測得端點A的俯角為60°,然后沿著平行于AB的方向水平飛行了500米,在點D測得端點B的俯角為45°,求島嶼兩端A、B的距離(結(jié)果精確到0.1米,參考數(shù)據(jù):
3
≈1.73,
2
≈1.41
分析:首先過點A作AE⊥CD于點E,過點B作BF⊥CD于點F,易得四邊形ABFE為矩形,根據(jù)矩形的性質(zhì),可得AB=EF,AE=BF.由題意可知:AE=BF=100米,CD=500米,然后分別在Rt△AEC與Rt△BFD中,利用三角函數(shù)即可求得CE與DF的長,繼而求得島嶼兩端A、B的距離.
解答:解:過點A作AE⊥CD于點E,過點B作BF⊥CD于點F,
∵AB∥CD,
∴∠AEF=∠EFB=∠ABF=90°,
∴四邊形ABFE為矩形.
∴AB=EF,AE=BF.
由題意可知:AE=BF=100米,CD=500米.…2分
在Rt△AEC中,∠C=60°,AE=100米.
∴CE=
AE
tan60°
=
100
3
=
100
3
3
(米).  …4分
在Rt△BFD中,∠BDF=45°,BF=100米.
∴DF=
BF
tan45°
=
100
1
=100(米).…6分
∴AB=EF=CD+DF-CE=500+100-
100
3
3
≈600-
100
3
×1.73≈600-57.67≈542.3(米).  …8分
答:島嶼兩端A、B的距離為542.3米.   …9分
點評:此題考查了俯角的定義、解直角三角形與矩形的性質(zhì).注意能借助俯角構(gòu)造直角三角形并解直角三角形是解此題的關(guān)鍵,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•山西)如圖,直線AB∥CD,AF交CD于點E,∠CEF=140°,則∠A等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•山西)如圖,AB是⊙O的直徑,C、D是⊙O上一點,∠CDB=20°,過點C作⊙O的切線交AB的延長線于點E,則∠E等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•山西)如圖,在平面直角坐標(biāo)系中,矩形OABC的對角線AC平行于x軸,邊OA與x軸正半軸的夾角為30°,OC=2,則點B的坐標(biāo)是
(2,2
3
(2,2
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•山西)如圖所示的工件的主視圖是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•山西)如圖是某公園的一角,∠AOB=90°,弧AB的半徑OA長是6米,C是OA的中點,點D在弧AB上,CD∥OB,則圖中休閑區(qū)(陰影部分)的面積是( 。

查看答案和解析>>

同步練習(xí)冊答案