一個正比例函數(shù)的圖象經過點A(1,-2),B(a,2),則a的值為            
a=-1

試題分析:先用待定系數(shù)法求出正比例函數(shù)的解析式,再把B點坐標代入解析式即可求出a的值.
試題解析:設正比例函數(shù)的解析式為y=kx,
∵圖象經過點A(1,-2),
∴k=-2
∴正比例函數(shù)的解析式為y=-2x,
把B(a,2)代入y=-2x,得a=-1
考點: 正比例函數(shù)圖象上點的坐標特征.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

在一次運輸任務中,一輛汽車將一批貨物從甲地運往乙地,到達乙地卸貨后返回.設汽車從甲地出發(fā)x(h)時,汽車與甲地的距離為y(km),y與x的函數(shù)關系如圖所示.
(1)這輛汽車的往、返速度是否相同?請說明理由;
(2)寫出返程中y與x之間的函數(shù)表達式;并指出其中自變量的取值范圍.
(3)求這輛汽車從甲地出發(fā)4h時與甲地的距離.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

甲、乙兩輛汽車沿同一路線趕赴距出發(fā)地480千米的目的地,乙車比甲車晚出發(fā)2小時(從甲車出發(fā)時開始計時).圖中折線、線段分別表示甲、乙兩車所行路程(千米)與時間(小時)之間的函數(shù)關系對應的圖象(線段表示甲出發(fā)不足2小時因故停車檢修).請根據(jù)圖象所提供的信息,解決如下問題:

(1)求乙車所行路程與時間的函數(shù)關系式;
(2)求兩車在途中第二次相遇時,它們距出發(fā)地的路程.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,直線與x軸、y 軸分別交于點A 和點B ,點C在直線AB上,且點C 的縱坐標為﹣1 ,點D 在反比例函數(shù)的圖象上 ,CD平行于y軸,,則k的值為      

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

一次函數(shù)y=kx+b(k,b為常數(shù),且k≠0)的圖象如圖所示,根據(jù)圖象信息可求得關于x的方程kx+b=0的解為    W.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在同一直角坐標系中畫出下列函數(shù)的圖象:.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

甲、乙兩人在直線跑道上同起點、同終點、同方向勻速跑步500米,先到終點的人原地休息,已知甲先出發(fā)2秒,在跑步過程中,甲、乙兩人的距離y(米)與乙出發(fā)的時間t(秒)之間的關系如圖所示,給出以下結論:①a=8;②b=92;③c=123.其中正確的是 (  )
A.①②③ B.僅有①②
C.僅有①③D.僅有②③

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

對于一次函數(shù)y=-2x+4,下列結論錯誤的是 (  )
A.函數(shù)值隨自變量的增大而減小
B.函數(shù)的圖象不經過第三象限
C.函數(shù)的圖象向下平移4個單位長度得y=-2x的圖象
D.函數(shù)的圖象與x軸的交點坐標是(0,4)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖①,在?ABCD中,AB=13,BC=50,BC邊上的高為12.點P從點B出發(fā),沿B-A-D-A運動,沿B-A運動時的速度為每秒13個單位長度,沿A-D-A運動時的速度為每秒8個單位長度.點Q從點 B出發(fā)沿BC方向運動,速度為每秒5個單位長度.P、Q兩點同時出發(fā),當點Q到達點C時,P、Q兩點同時停止運動.設點P的運動時間為t(秒).連結PQ.

(1)當點P沿A-D-A運動時,求AP的長(用含t的代數(shù)式表示).
(2)連結AQ,在點P沿B-A-D運動過程中,當點P與點B、點A不重合時,記△APQ的面積為S.求S與t之間的函數(shù)關系式.
(3)過點Q作QR∥AB,交AD于點R,連結BR,如圖②.在點P沿B-A-D運動過程中,當線段PQ掃過的圖形(陰影部分)被線段BR分成面積相等的兩部分時t的值.
(4)設點C、D關于直線PQ的對稱點分別為C′、D′,直接寫出C′D′∥BC時t的值.

查看答案和解析>>

同步練習冊答案