【題目】如圖在平面直角坐標系中,點坐標,點坐標,連接,平分于點

1)如圖1,求的長;

2)如圖2,延長線上一點,連接,,且,過點軸于點,若點是線段上一點,點的橫坐標為,連接,設的面積為,求的關系;

3)在(2)的條件下,如圖3,線段上存在一點,使得,點的延長線上,且,連接,若,求點的坐標及值?

【答案】123

【解析】

1)作,利用角平分線得到利用等角的三角函數(shù)值相等建立方程,再用勾股定理即可得到答案.

2)過,證明,求解的長及的坐標,進而求解上的高,利用面積公式可得答案,

3)過軸于,連接利用已知條件,結合相似三角形的性質證明四邊形為平行四邊形,從而求解的長,過利用 平行四邊形的性質,等角的三角函數(shù)值相等建立方程,最后利用勾股定理可得答案.

解:(1)如圖,作,

平分

坐標,點坐標

解得:

2)如圖,過

平分

四邊形為正方形,

由(1)知:

3)如圖,過軸于,連接

由(2)知:

軸,

由(2)知:

由(2)得:軸,而,

四邊形為平行四邊形,

,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】有五張正面分別標有數(shù)字﹣2,﹣10,12的卡片,它們除數(shù)字不同外其余全部相同.現(xiàn)將它們背面朝上,洗勻后從中隨機抽取一張,記卡片上的數(shù)字為a,則使關于x的一元二次方程x2﹣2a﹣1x+aa﹣3=0有兩個不相等的實數(shù)根,且以x為自變量的二次函數(shù)y=x2a2+1x﹣a+2的圖象不經(jīng)過點(1,0)的概率是__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點的直徑的延長線上,點上, , ,

(1)求證: 的切線;

(2)若的半徑為2,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為了測量某建筑物CD的高度,先在地面上用測角儀自A處測得建筑物頂部的仰角是30°,然后在水平地面上向建筑物前進了100 m,此時自B處測得建筑物頂部的仰部角是45°已知測角儀的高度是15 m,請你計算出該建筑物的高度.(取≈1732,結果精確到1 m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD的對角線AC、BD相交于點O,分別作BE⊥AC于E,DF⊥AC于F,已知OE=OF,CE=AF.

(1)求證:△BOE≌△DOF;

(2)若,則四邊形ABCD是什么特殊四邊形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,在ABC中,∠ACB=90°,點DABC外,連接AD,作DEAB,交BC于點F,AD=ABAE=AC,連接AF,則DF,BC,CF間的等量關系是 ;

2)如圖2AB=AD,AC=AE,∠ACB=AED=90°,延長BCDE于點F,寫出DF,BC,CF間的等量關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,在邊長為1的正方形的邊上有—動點沿正方形運動一周,的縱坐標與點走過的路程之間的函數(shù)關系用圖象表示大致是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】你知道數(shù)學中的整體思想嗎?解題中,若把注意力和著眼點放在問題的整體上,多方位思考、聯(lián)想、探究,進行整體思考、整體加減,能使問題迅速獲解.

例題:已知x2+xy=4xy+y2=-1.求代數(shù)式x2-y2的值.

解:將兩式相減,得(x2+xy)-(xy+y2)=4-(-1),即x2-y2=5;請用整體思想解答下列問題:

1)在例題的基礎上求(x+y)2的值;

2)若關于x、y的二元一次方程組的解也是二元一次方程x+y=6的解,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學組織植樹活動,按年級將七、八、九年級學生分成三個植樹隊,七年級植樹x棵,八年級種的數(shù)比七年級種的數(shù)的2倍少26棵,九年級種的樹比八年級種的樹的一半多42棵.

(1)請用含x的式子表示三個隊共種樹多少棵.

(2)若這三個隊共種樹423棵,請你求出這三隊各種了多少棵樹.

查看答案和解析>>

同步練習冊答案