若ab≠1,且有5a2+2002a+9=0及9b2+2002b+5=0,則數(shù)學公式的值是


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    -數(shù)學公式
  4. D.
    -數(shù)學公式
A
分析:觀察本題,可把這兩個式子整理成形式相同的式子,然后根據(jù)根與系數(shù)的關系可以求出所求代數(shù)式的值.
解答:∵5a2+2002a+9=0,
則5++=0,
∴9(2+2002()+5=0,
又9b2+2002b+5=0,
≠b,
,b為方程9x2+2002x+5=0的兩根,
故兩根之積==
=
故選A.
點評:解決本題的關鍵是把所求的代數(shù)式整理成與根與系數(shù)有關的形式.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

若a•b≠1,且有2a2+5a+1=0,b2+5b+2=0,則2
b
a
+
a
b
的值為( 。
A、
5
2
2
B、
5
5
2
C、
5
2
3
D、
5
5
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

問題背景:
在△ABC中,AB、BC、AC三邊的長分別為
5
、
10
、
13
,求這個三角形的面積.
小輝同學在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖①所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積.我們把上述求△ABC面積的方法叫做構圖法.
(1)若△ABC三邊的長分別為
5
a,2
2
a,
17
a
(a>0),請利用圖②的正方形網(wǎng)格(每個小正方形的邊長為a)畫出相應的△ABC,并求出它的面積.
思維拓展:
(2)若△ABC三邊的長分別為
m2+16n2
9m2+4n2
,2
m2+n2
(m>0,n>0,且m≠n),試運用構圖法求出這三角形的面積.
探索創(chuàng)新:
(3)已知a、b都是正數(shù),a+b=3,求當a、b為何值時
a2+4
+
b2+25
有最小值,并求這個最小值.
(4)已知a,b,c,d都是正數(shù),且a2+b2=c2,c
a2-d2
=a2,求證:ab=cd.

查看答案和解析>>

同步練習冊答案