12、我國(guó)宋朝數(shù)學(xué)家楊輝在他的著作《詳解九章算法》中提出右表,此表揭示了(a+b)n(n為非負(fù)數(shù))展開式的各項(xiàng)系數(shù)的規(guī)律.例如:
(a+b)0=1,它只有一項(xiàng),系數(shù)為1;
(a+b)1=a+b,它有兩項(xiàng),系數(shù)分別為1,1;
(a+b)2=a2+2ab+b2,它有三項(xiàng),系數(shù)分別為1,2,1;
(a+b)3=a3+3a2b+3ab2+b3,它有四項(xiàng),系數(shù)分別為1,3,3,1;
根據(jù)以上規(guī)律,(a+b)4展開式共有五項(xiàng),系數(shù)分別為
1,4,6,4,1
分析:根據(jù)圖片可知,從第三行開始,除去首項(xiàng)和最后一項(xiàng),其余項(xiàng)應(yīng)該等于上一行與其列數(shù)相同的數(shù)+上一行前一列的數(shù).那么第五行的五個(gè)數(shù)就應(yīng)該是1,4,6,4,1.
解答:解:(a+b)0=1,它只有一項(xiàng),系數(shù)為1;
(a+b)1=a+b,它有兩項(xiàng),系數(shù)分別為1,1;
(a+b)2=a2+2abb2,它有三項(xiàng),系數(shù)分別為1,2,1;
(a+b)3=a3+3a2b+3ab2+b3,它有四項(xiàng),系數(shù)分別為1,3,3,1;
所以(a+b)4展開的五項(xiàng)系數(shù)應(yīng)該為:1,4,6,4,1.
點(diǎn)評(píng):本題考查完全平方公式的推廣,讀懂題目信息,準(zhǔn)確找出規(guī)律是解題的關(guān)鍵,這類題型在中考中經(jīng)常出現(xiàn).對(duì)于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、我國(guó)宋朝數(shù)學(xué)家楊輝在他的著作《詳解九章算法》中提出“楊輝三角”(如圖),此圖揭示了(a+b)n(n為非負(fù)整數(shù))展開式的項(xiàng)數(shù)及各項(xiàng)系數(shù)的有關(guān)規(guī)律.
例如:(a+b)0=1,它只有一項(xiàng),系數(shù)為1;(a+b)1=a+b,它有兩項(xiàng),系數(shù)分別為1,1,系數(shù)和為2;(a+b)2=a2+2ab+b2,它有三項(xiàng),系數(shù)分別為1,2,1,系數(shù)和為4;(a+b)3=a3+3a2b+3ab2+b3,它有四項(xiàng),系數(shù)分別為1,3,3,1,系數(shù)和為8;

根據(jù)以上規(guī)律,解答下列問題:
(1)(a+b)4展開式共有
5
項(xiàng),系數(shù)分別為
1,4,6,4,1
;
(2)(a+b)n展開式共有
n+1
項(xiàng),系數(shù)和為
2n

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

27、閱讀下面一段材料,回答問題.
我國(guó)宋朝數(shù)學(xué)家楊輝在他的著作《詳解九章算法》中提出右下表,此表揭示了(a+b)n(n為非負(fù)整數(shù))展開式的各項(xiàng)系數(shù)的規(guī)律,例如:
(a+b)0=1,它只有一項(xiàng),系數(shù)為1;
(a+b)1=a+b,它有兩項(xiàng),系數(shù)分別為1,1;
(a+b)2=a2+2ab+b2,它有三項(xiàng),系數(shù)分別為1,2,1;
(a+b)3=a3+3a2b+3ab2+b3,它有四項(xiàng),系數(shù)分別為1,3,3,1;

根據(jù)以上規(guī)律,(a+b)4展開式共有五項(xiàng),系數(shù)分別為
1
,
4
6
,
4
1

計(jì)算:(a+b)4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

4、我國(guó)宋朝數(shù)學(xué)家楊輝在他的著作《詳解九章算法》中提出“楊輝三角”(如下圖),此圖揭示了(a+b)n(n為非負(fù)整數(shù))展開式的項(xiàng)數(shù)及各項(xiàng)系數(shù)的有關(guān)規(guī)律.例如:
(a+b)0=1,它只有一項(xiàng),系數(shù)為1;
(a+b)1=a+b,它有兩項(xiàng),系數(shù)分別為1,1,系數(shù)和為2;
(a+b)2=a2+2ab+b2,它有三項(xiàng),系數(shù)分別為1,2,1,系數(shù)和為4;
(a+b)3=a3+3a2b+3ab2+b3,它有四項(xiàng),系數(shù)分別為1,3,3,1,系數(shù)和為8;

根據(jù)以上規(guī)律,解答下列問題:
(1)(a+b)4展開式共有
5
項(xiàng),系數(shù)分別為
1,4,6,4,1
;
(2)(a+b)n展開式共有
n+1
項(xiàng),系數(shù)和為
2n

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年四川程度鐵中初一2月入學(xué)考試數(shù)學(xué)卷 題型:解答題

我國(guó)宋朝數(shù)學(xué)家楊輝在他的著作《詳解九章算法》中提出“楊輝三角”(如下圖),此圖揭示了 (a+b)n(n為非負(fù)整數(shù))展開式的項(xiàng)數(shù)及各項(xiàng)系數(shù)的有關(guān)規(guī)律.
例如:
,它只有一項(xiàng),系數(shù)為1;
,它有兩項(xiàng),系數(shù)分別為1,1,系數(shù)和為2;
,它有三項(xiàng),系數(shù)分別為1,2,1,系數(shù)和為4;
,它有四項(xiàng),系數(shù)分別為1,3,3,1,系數(shù)和為8;……
根據(jù)以上規(guī)律,解答下列問題:
(1)展開式共有    項(xiàng),系數(shù)分別為       ;
(2)展開式共有    項(xiàng),系數(shù)和為      

查看答案和解析>>

同步練習(xí)冊(cè)答案