如圖,四邊形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.則BD2的值為


  1. A.
    14
  2. B.
    15
  3. C.
    18
  4. D.
    12
B
分析:作AM⊥BC于點M,AN⊥BD于點N,根據(jù)題給條件及等腰三角形的性質(zhì)證明△ABN≌△BAM,繼而求出AN的值,在Rt△ABN中,利用勾股定理求解即可.
解答:作AM⊥BC于點M,AN⊥BD于點N,

∵AC=AB,
∴△ABC為等腰三角形,
∴AM也是△ABC的中線和角平分線(三線合一),
∴∠CAM=∠BAM,
∴△ABM≌△ACM,
∵AB∥CD,AC=AD,
∴∠ADC=∠ACD=∠CAB,
∵∠ADB=∠ABD=∠CDB,
∴∠ADB=∠ADC=∠MAB,
∴∠MAB=∠DBA,
又∵AB=AB,
∴△ABN≌△BAM(AAS),
∴AN=BC=
∵AB=2,
∴BN2=AB2-AN2=
∴BD2=4BN2=15.
故選B.
點評:本題考查了梯形的知識,同時涉及了等腰三角形的性質(zhì)和勾股定理的知識,難度適中,解題關鍵是正確作出輔助線.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設AC=2a,BD=2b,請推導這個四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案