到一個三角形三條邊所在直線等距離的點有________個.

4
分析:要求滿足條件的點的個數(shù),要結合根據(jù)角平分線的性質找,但要注意包括三個外角,共4個點.
解答:解:如圖,∵HD平分∠EHF
∴DE=DF
∵JD平分∠GJF
所以DG=DF,故DE=DG
同理,在1號、2號、3號區(qū)域內也可各找到到一個三角形三條邊所在直線等距離的點,所以共有四個點.
到一個三角形三條邊所在直線等距離的點有4個.
點評:本題考查了角平分線的性質;根據(jù)角平分線的性質解答,本題值得注意的是思考要全面,不能漏掉外角的情況.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀材料并解答問題:
我國是最早了解和應用勾股定理的國家之一,古代印度、希臘、阿拉伯等許多國家也都很重視對勾股定理的研究和應用,古希臘數(shù)學家畢達哥拉斯首先證明了勾股定理,在西方,勾股定理又稱為“畢達哥拉斯定理”.
關于勾股定理的研究還有一個很重要的內容是勾股數(shù)組,在《幾何》課本中我們已經(jīng)了解到,“能夠成為直角三角形三條邊的三個正整數(shù)稱為勾股數(shù)”,以下是畢達哥拉斯等學派研究出的確定勾股數(shù)組的兩種方法:
方法1:若m為奇數(shù)(m≥3),則a=m,b=
1
2
(m2-1)和c=
1
2
(m2+1)是勾股數(shù).
方法2:若任取兩個正整數(shù)m和n(m>n),則a=m2-n2,b=2mn,c=m2+n2是勾股數(shù).
(1)在以上兩種方法中任選一種,證明以a,b,c為邊長的△ABC是直角三角形;
(2)請根據(jù)方法1和方法2按規(guī)律填寫下列表格:
精英家教網(wǎng)
(3)某園林管理處要在一塊綠地上植樹,使之構成如下圖所示的圖案景觀,該圖案由四個全等的直角三角形組成,要求每個三角形頂點處都植一棵樹,各邊上相鄰兩棵樹之間的距離均為1米,如果每個三角形最短邊上都植6棵樹,且每個三角形的各邊長之比為5:12:13,那么這四個直角三角形的邊長共需植樹
 
棵.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

16、下列命題中假命題的是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

下列說法:
①平分弦的直徑垂直于弦   
②三點確定一個圓,
③相等的圓心角所對的弧相等 
④垂直于半徑的直線是圓的切線  
⑤三角形的內心到三條邊的距離相等
其中不正確的有(  )

查看答案和解析>>

科目:初中數(shù)學 來源:2013-2014學年湖北省鄂州市九年級上學期10月月考數(shù)學試卷(解析版) 題型:選擇題

下列說法①平分弦的直徑垂直于弦;②三點確定一個圓;③相等的圓心角所對的弧相等;④垂直于半徑的直線是圓的切線;⑤三角形的內心到三條邊的距離相等。其中不正確的有(。﹤。

A.1    B.2   C.3   D.4

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

我國是最早了解和應用勾股定理的國家之一,古代印度、希臘、阿拉伯等許多國家也都很重視對勾股定理的研究和應用,古希臘數(shù)學家畢達哥拉斯首先證明了勾股定理,在西方,勾股定理又稱為“畢達哥拉斯定理”.
關于勾股定理的研究還有一個很重要的內容是勾股數(shù)組,在《幾何》課本中我們已經(jīng)了解到,“能夠成為直角三角形三條邊的三個正整數(shù)稱為勾股數(shù)”,以下是畢達哥拉斯等學派研究出的確定勾股數(shù)組的兩種方法:
方法1:若m為奇數(shù)(m≥3),則a=m,b=數(shù)學公式(m2-1)和c=數(shù)學公式(m2+1)是勾股數(shù).
方法2:若任取兩個正整數(shù)m和n(m>n),則a=m2-n2,b=2mn,c=m2+n2是勾股數(shù).
(1)在以上兩種方法中任選一種,證明以a,b,c為邊長的△ABC是直角三角形;
(2)請根據(jù)方法1和方法2按規(guī)律填寫下列表格:

(3)某園林管理處要在一塊綠地上植樹,使之構成如下圖所示的圖案景觀,該圖案由四個全等的直角三角形組成,要求每個三角形頂點處都植一棵樹,各邊上相鄰兩棵樹之間的距離均為1米,如果每個三角形最短邊上都植6棵樹,且每個三角形的各邊長之比為5:12:13,那么這四個直角三角形的邊長共需植樹______棵.

查看答案和解析>>

同步練習冊答案