已知:拋物線y=-
3
x2-2
3
(a-1)x-
3
(a2-2a)與x軸交于點(diǎn)A(x1,0)、B(x2,0),且x1<1<x2
(1)求A、B兩點(diǎn)的坐標(biāo)(用a表示);
(2)設(shè)拋物線的頂點(diǎn)為C,求△ABC的面積;
(3)若a是整數(shù),P為線段AB上的一個(gè)動(dòng)點(diǎn)(P點(diǎn)與A、B兩點(diǎn)不重合),在x軸上方作等邊△APM和等邊△BPN,記線段MN的中點(diǎn)為Q,求拋物線的解析式及線段PQ的長(zhǎng)的取值范圍.
(1)∵拋物線與x軸交于點(diǎn)A(x1,0)、B(x2,0),
∴x1、x2是關(guān)于x的方程-
3
x2-2
3
(a-1)x-
3
(a2-2a)=0
的解;
方程可化簡(jiǎn)為x2+2(a-1)x+(a2-2a)=0;
解方程,得x=-a或x=-a+2;
∵x1<x2,-a<-a+2,(1分)
∴x1=-a,x2=-a+2
∴A、B兩點(diǎn)的坐標(biāo)分別為A(-a,0),B(-a+2,0)(2分)

(2)∵AB=2,頂點(diǎn)C的縱坐標(biāo)為
3
,(3分)
∴△ABC的面積等于
3
;(4分)

(3)∵x1<1<x2
∴-a<1<-a+2
∴-1<a<1;(5分)
∵a是整數(shù),
∴a=0,
即所求拋物線的解析式為y=-
3
x2+2
3
x;(6分)
解法一:此時(shí)頂點(diǎn)C的坐標(biāo)為C(1,
3
)如圖,作CD⊥AB于D,連接CQ,
則AD=1,CD=
3
,tan∠BAC=
3
,
∴∠BAC=60°
由拋物線的對(duì)稱性可知△ABC是等邊三角形;
由△APM和△BPN是等邊三角形,線段MN的中點(diǎn)為Q可得,
點(diǎn)M、N分別在AC和BC邊上,四邊形PMCN的平行四邊形,
C、Q、P三點(diǎn)共線,且PQ=
1
2
PC;(7分)
∵點(diǎn)P線段AB上運(yùn)動(dòng)的過(guò)程中,P與A、B兩點(diǎn)不重合,
DC≤PC<AC,DC=
3
,AC=2,
3
2
≤PQ<1;(8分)

解法二:設(shè)點(diǎn)P的坐標(biāo)為P(x,0)(0<x<2)如圖,作MM1⊥AB于M1,NN1⊥AB于N1
∵△APM和△BPN是等邊三角形,且都在x軸上方,
∴AM=AP=x,BN=BP=2-x,∠MAP=60°,∠NBP=60°
∴AM1=AM•cos∠MAB=
x
2
,
MM1=AM•sin∠MAB=
3
x
2

BN1=BN•cos∠NBP=
2-x
2
,
NN1=BN•sin∠NBP=
2
3
-
3
x
2

∴AN1=AB-BN1=2-
2-x
2
=
2+x
2

∴M、N兩點(diǎn)的坐標(biāo)分)別為M(
x
2
,
3
x
2
),N(
2+x
2
,
2
3
-
3
x
2

可得線段MN的中點(diǎn)Q的坐標(biāo)為Q(
x+1
2
3
2

由勾股定理得PQ=
(x-
x+1
2
)
2
+(
3
2
)
2
=
1
2
(x-1)2+3
(7分)
∵點(diǎn)P在線段AB上運(yùn)動(dòng)的過(guò)程中,P與A、B兩點(diǎn)不重合,0<x<2,
∴3≤(x-1)2+3<4,
3
2
≤PQ<1.(8分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

平移二次函數(shù)y=2x2的圖象,使它經(jīng)過(guò)(-1,0),(2,-6)兩點(diǎn).
(1)求這時(shí)圖象對(duì)應(yīng)的函數(shù)關(guān)系式.
(2)求出拋物線的頂點(diǎn)坐標(biāo)和對(duì)稱軸.
(3)畫出該函數(shù)的圖象.(溫馨提示:把坐標(biāo)系畫全,可要記住列表喲)
x-10123
y0-6-8-60
(4)x為何值時(shí),y隨x的增大而減。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中,A(-1,0),B(3,0).
(1)若拋物線過(guò)A,B兩點(diǎn),且與y軸交于點(diǎn)(0,-3),求此拋物線的頂點(diǎn)坐標(biāo);
(2)如圖,小敏發(fā)現(xiàn)所有過(guò)A,B兩點(diǎn)的拋物線如果與y軸負(fù)半軸交于點(diǎn)C,M為拋物線的頂點(diǎn),那么△ACM與△ACB的面積比不變,請(qǐng)你求出這個(gè)比值;
(3)若對(duì)稱軸是AB的中垂線l的拋物線與x軸交于點(diǎn)E,F(xiàn),與y軸交于點(diǎn)C,過(guò)C作CPx軸交l于點(diǎn)P,M為此拋物線的頂點(diǎn).若四邊形PEMF是有一個(gè)內(nèi)角為60°的菱形,求此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,一次函數(shù)y=x-5分別交x軸、y軸于A、B兩點(diǎn),二次函數(shù)y=-x2+bx+c的圖象經(jīng)過(guò)A、B兩點(diǎn).
(1)求二次函數(shù)的解析式;
(2)設(shè)D、E是線段AB上異于A、B的兩個(gè)動(dòng)點(diǎn)(E點(diǎn)位于D點(diǎn)上方),DE=
2

①若點(diǎn)D的橫坐標(biāo)為t,用含t的代數(shù)式表示D、E的坐標(biāo);
②拋物線上是否存在點(diǎn)F,使點(diǎn)F與點(diǎn)D關(guān)于x軸對(duì)稱,如果存在,請(qǐng)求出△AEF的面積;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在正方形ABCD中,AB=2,E是AD邊上一點(diǎn)(點(diǎn)E與點(diǎn)A,D不重合).BE的垂直平分線交AB于M,交DC于N.
(1)設(shè)AE=x,四邊形ADNM的面積為S,寫出S關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)AE為何值時(shí),四邊形ADNM的面積最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,一網(wǎng)球從斜坡的點(diǎn)O拋出,網(wǎng)球的拋物線為y=4x-
1
2
x2
,斜坡OA的坡度i=1:2,則網(wǎng)球在斜坡的落點(diǎn)A的垂直高度是( 。
A.2B.3.5C.7D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

將進(jìn)貨單價(jià)為40元的商品按50元售出時(shí),就能賣出500個(gè),已知這個(gè)商品每個(gè)漲價(jià)1元,其銷售量就減少10個(gè).
(1)問(wèn):為了賺得8000元的利潤(rùn),售價(jià)應(yīng)定為多少?這時(shí)進(jìn)貨多少個(gè)?
(2)當(dāng)定價(jià)為多少元時(shí),可獲得最大利潤(rùn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,將OA=8,AB=6的矩形OABC放置在平面直角坐標(biāo)系中,動(dòng)點(diǎn)M,N以每秒1個(gè)單位的速度分別從點(diǎn)A,C同時(shí)出發(fā),其中點(diǎn)M沿AO向終點(diǎn)O運(yùn)動(dòng),點(diǎn)N沿CB向終點(diǎn)B運(yùn)動(dòng),當(dāng)兩個(gè)動(dòng)點(diǎn)運(yùn)動(dòng)了t秒時(shí),過(guò)點(diǎn)N作NP⊥BC,交OB于點(diǎn)P,連接MP.
(1)點(diǎn)B的坐標(biāo)為______;用含t的式子表示點(diǎn)P的坐標(biāo)為______;
(2)記△OMP的面積為S,求S與t的函數(shù)關(guān)系式(0<t<8),并求當(dāng)t為何值時(shí),S有最大值?若有,求出這個(gè)最大值;
(3)試探究:在上述運(yùn)動(dòng)過(guò)程中,是否存在某一個(gè)時(shí)刻,△OPM是等腰三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

一男生推鉛球,鉛球在運(yùn)動(dòng)過(guò)程中,高度不斷發(fā)生變化.已知當(dāng)鉛球飛出的水平距離為x時(shí),其高度為(-
1
12
x2+
2
3
x+
5
3
)
米,則這位同學(xué)推鉛球的成績(jī)?yōu)椋ā 。?table style="margin-left:0px;width:650px;">A.9米B.10米C.11米D.12米

查看答案和解析>>

同步練習(xí)冊(cè)答案