【題目】如圖, 為線段上一動點(不與點、重合),在同側(cè)分別作正三角形和正三角形,與交于點,與交于點,與交于點,連接,以下五個結(jié)論:①,②,③,④,⑤,一定成立的是( )
A.①②③④
B.①②④⑤
C.①②③⑤
D.①③④⑤
【答案】B
【解析】
根據(jù)等邊三角形的性質(zhì)可以得出E△ACE≌△DCB,就可以得出∠CAE=∠CDB,∠AEC=∠DBC,通過證明△CEG≌△CBH就可以得出CG=CH,GE=HB,可以得出△GCH是等邊三角形,就可以得出∠GHC=60°,就可以得出GH//AB,由∠DCH≠∠DHC就可以得出CD≠DH,就可以得出AD≠DH,根據(jù)∠AFD=∠EAB+∠CBD=∠CDB+∠CBD=∠ACD=60°,進而得出結(jié)論.
解:∵△ACD和△BCE是等邊三角形,
∴AD=AC=CD,CE=CB=BE,∠ACD=∠BCE=60°.
∵∠ACB=180°,
∴∠DCE=60°.
∴∠DCE=∠BCE.
∴∠ACD+∠DCE=∠BCE+∠DCE,
∴∠ACE=∠DCB.
在△ACE和△DCB中,
,
∴△ACE≌△DCB(SAS),
∴AE=BD,∠CAE=∠CDB,∠AEC=∠DBC.
在△CEG和△CBH中,
,
∴△CEG≌△CBH(ASA),
∴CG=CH,GE=HB,
∴△CGH為等邊三角形,
∴∠GHC=60°,
∴∠GHC=∠BCH,
∴GH//AB.
∵∠AFD=∠EAB+∠CBD,
∴∠AFD=∠CDB+∠CBD=∠ACD=60°.
∵∠DHC=∠HCB+∠HBC=60°+∠HBC,∠DCH=60°
∴∠DCH≠∠DHC,
∴CD≠DH,
∴AD≠DH.
綜上所述,正確的有:①②④⑤.
故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,M是邊BC延長線上一點,連接AM交△ABC的外接圓于點D,延長BD至N,使得BN=AM,連接CN、MN,
(1)求證:△CMN是等邊三角形;
(2)判斷CN與⊙O的位置關(guān)系,并說明理由;
(3)若AD:AB=3:4,BN=4,求等邊△ABC的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題6分)甲、乙兩人進行摸牌游戲.現(xiàn)有三張形狀大小完全相同的牌,正面分別標(biāo)有數(shù)字2,3,5.將三張牌背面朝上,洗勻后放在桌子上.
(1)甲從中隨機抽取一張牌,記錄數(shù)字后放回洗勻,乙再隨機抽取一張.請用列表法或畫樹狀圖的方法,求兩人抽取相同數(shù)字的概率;
(2)若兩人抽取的數(shù)字和為2的倍數(shù),則甲獲勝;若抽取的數(shù)字和為5的倍數(shù),則乙獲勝.這個游戲公平嗎?請用概率的知識加以解釋.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題8分)如圖某幢大樓頂部有廣告牌CD.張老師目高MA為1.60米,他站立在離大樓45米的A處測得大樓頂端點D的仰角為30°;接著他向大樓前進14米、站在點B處,測得廣告牌頂端點C的仰角為45°.(取 ,計算結(jié)果保留一位小數(shù))
(1)求這幢大樓的高DH;
(2)求這塊廣告牌CD的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為發(fā)展校園足球運動,某縣城區(qū)四校決定聯(lián)合購買一批足球運動裝備,市場調(diào)查發(fā)現(xiàn):甲、乙兩商場以同樣的價格出售同種品牌的足球隊服和足球,已知每套隊服比每個足球多50元,兩套隊服與三個足球的費用相等,經(jīng)洽談,甲商場優(yōu)惠方案是:每購買十套隊服,送一個足球;乙商場優(yōu)惠方案是:若購買隊服超過80套,則購買足球打八折.
(1)求每套隊服和每個足球的價格是多少?
(2)若城區(qū)四校聯(lián)合購買100套隊服和a個足球,請用含a的式子分別表示出到甲商場和乙商場購買裝備所花的費用;
(3)假如你是本次購買任務(wù)的負(fù)責(zé)人,你認(rèn)為到哪家商場購買比較合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:①b2﹣4ac<0;②方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3;③2a+b=0;④當(dāng)y>0時,x的取值范圍是﹣1<x<3;⑤當(dāng)x>0時,y隨x增大而減小.其中結(jié)論正確的個數(shù)是( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CD⊥AB,垂足為D,點E在BC上,EF⊥AB,垂足為F.
(1)求證: CD∥EF
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度數(shù)
(3)若BC=6cm,△ABC的面積是12cm2 ,則點A到直線BC的距離是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為a, P為正方形邊上一動點,運動路線是A-D-C-B-A,設(shè)P點經(jīng) 過的路程為x,以點A,P,D為頂點的三角形的面積是y,圖象反映了y與x的關(guān)系,當(dāng)時,x=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】詩詞是我國古代文化中的瑰寶,某市教育主管部門為了解本市初中生對詩詞的學(xué)習(xí)情況,舉辦了一次“中華詩詞”背誦大賽,隨機抽取了部分同學(xué)的成績(x為整數(shù),總分100分),繪制了如下尚不完整的統(tǒng)計圖表.
組別 | 成績分組(單位:分) | 頻數(shù) |
A | 50≤x<60 | 40 |
B | 60≤x<70 | a |
C | 70≤x<80 | 90 |
D | 80≤x<90 | b |
E | 90≤x<100 | 100 |
合計 | c |
根據(jù)以上信息解答下列問題:
(1)統(tǒng)計表中a= ,b= ,c= ;
(2)扇形統(tǒng)計圖中,m的值為 ,“E”所對應(yīng)的圓心角的度數(shù)是 (度);
(3)若參加本次大賽的同學(xué)共有4000人,請你估計成績在80分及以上的學(xué)生大約有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com