【題目】如圖,小黃站在河岸上的點,看見河里有一小船沿垂直于岸邊的方向劃過來.此時,測得小船的俯角是,若小黃的眼睛與地面的距離米,米,平行于所在的直線,迎水坡的坡度為,坡長米,則此時小船到岸邊的距離的長為( )米.(,結(jié)果保留兩位有效數(shù)字)

A. 11 B. 8.5 C. 7.2 D. 10

【答案】D

【解析】

ABCD都整理為直角三角形的斜邊,利用坡度和勾股定理易得點B和點DCA的距離進(jìn)而利用俯角的正切值可求得CH長度.CHAE=EH即為AC長度

過點BBEAC于點E,延長DGCA于點H,RtABE和矩形BEHG

i==,設(shè)BE=4x,AE=3x,AB=5x

AB=10.5,∴x=2.1,BE=8.4AE=6.3

DG=1.6,BG=0.7,DH=DG+GH=1.6+8.4=10,AH=AE+EH=6.3+0.7=7

RtCDH中,∵∠C=FDC=30°,DH=10tan30°==,CH17

又∵CH=CA+7,17=CA+7,CA=177=10(米)

故選D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在中,點,

求證:

當(dāng)時,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,OA=2cm,OA⊥OB,AC交OB于D點,AD=2CD.

(1)求∠BOC的度數(shù);

(2)求線段BD、線段CD和   BC圍成的圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為厲行節(jié)能減排,倡導(dǎo)綠色出行,今年3月以來.“共享單車”(俗稱“小黃車”)公益活動登陸我市中心城區(qū),某公司擬在甲、乙兩個街道社區(qū)投放一批“小黃車”,這批自行車包括A、B兩種不同款型,請回答下列問題:

問題1:單價

該公司早期在甲街區(qū)進(jìn)行了試點投放,共投放A、B兩型自行車各50輛,投放成本共計7500元,其中B型車的成本單價比A型車高10元,A、B兩型自行車的單價各是多少?

問題2:投放方式

該公司決定采取如下投放方式:甲街區(qū)每1000人投放a輛“小黃車”,乙街區(qū)每1000人投放 輛“小黃車”,按照這種投放方式,甲街區(qū)共投放1500輛,乙街區(qū)共投放1200輛,如果兩個街區(qū)共有15萬人,試求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小島在港口P的北偏西60°方向,距港口56海里的A處,貨船從港口P出發(fā),沿北偏東45°方向勻速駛離港口P,4小時后貨船在小島的正東方向.求貨船的航行速度.(精確到0.1海里/時,參考數(shù)據(jù):≈1.41,≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個六邊形的六個內(nèi)角都是120°,連續(xù)四邊的長依次為2.312.32,2.33,2.31,則這個六邊形的周長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠APB=30°,OP=3cm,⊙O的半徑為1cm,若圓心O沿著BP的方向在直線BP上移動.(1)當(dāng)圓心O移動的距離為1cm時,則⊙O與直線PA的位置關(guān)系是_____.(2)若圓心O的移動距離是d,當(dāng)⊙O與直線PA相交時,則d的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,點分別在、上運動(不與點重合).

1)如圖1的平分線,的反方向延長線與的平分線交于點

①若,則為多少度?請說明理由.

②猜想:的度數(shù)是否隨、的移動發(fā)生變化?請說明理由.

2)如圖2,若,,則的大小為 度(直接寫出結(jié)果);

3)若將“”改為“)”,且,其余條件不變,則的大小為 度(用含、的代數(shù)式直接表示出米).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)yy在第一象限內(nèi)的圖象如圖,點Py的圖象上一動點,PCx軸于點C,交y的圖象于點B.給出如下結(jié)論:①△ODBOCA的面積相等;②PAPB始終相等;③四邊形PAOB的面積大小不會發(fā)生變化;④CAAP.其中所有正確結(jié)論的序號是(  )

A. ①②③ B. ②③④ C. ①③④ D. ①②④

查看答案和解析>>

同步練習(xí)冊答案