如圖,在平面直角坐標(biāo)系中,A、B是x鈾上的兩點(diǎn),C是y軸上的一點(diǎn).∠ACB=90°,∠CAB=30°,AO、BO為直徑的半圓分別交AC、BC于E、F兩點(diǎn),若C點(diǎn)的坐標(biāo)為(0,4).
(1)求圖象過A、B、C三點(diǎn)的二次函數(shù)的解析式;
(2)求圖象過點(diǎn)E、F的一次函數(shù)的解析式.

解:(1)由題意得OC=4.
∵∠ACB=90°,∠CAB=30°,
∴OA=4,A(-4,0).
同理可得B(,0).
設(shè)二次函數(shù)解析式為y=ax2+bx+c,
則48a-4b+c=0,
a+b+c=0,
c=4.
解得a=-0.25,b=
故二次函數(shù)解析式為y=-0.25x2+x+4;

(2)連接OE,作EM⊥x軸于點(diǎn)M.
∵∠AEO=90°,∠CAB=30°,
∴OE=2,∠AOE=60°.
∴OM=,EM=3,
那么E(-,3),同法可得F(,1).
設(shè)過EF的直線解析式為y=kx+b.
那么-k+b=3;k+b=1.
解得k=-,b=2.
那么y=-x+2.
故圖象過點(diǎn)E、F的一次函數(shù)的解析式為y=-x+2.
分析:(1)利用三角函數(shù)易得OA,OB長(zhǎng),得到A,B坐標(biāo),運(yùn)用待定系數(shù)法求二次函數(shù)解析式;
(2)連接OE,作EM⊥x軸于點(diǎn)M.利用三角函數(shù)可得點(diǎn)E坐標(biāo),同法求得F坐標(biāo),代入一次函數(shù)解析式即可.
點(diǎn)評(píng):本題主要考查了用待定系數(shù)法求函數(shù)解析式,關(guān)鍵是利用特殊三角函數(shù)值求得相應(yīng)點(diǎn)的坐標(biāo).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案