【題目】某興趣小組開展課外活動(dòng).如圖,A,B兩地相距12米,小明從點(diǎn)A出發(fā)沿AB方向勻速前進(jìn),2秒后到達(dá)點(diǎn)D,此時(shí)他(CD)在某一燈光下的影長為AD,繼續(xù)按原速行走2秒到達(dá)點(diǎn)F,此時(shí)他在同一燈光下的影子仍落在其身后,并測得這個(gè)影長為1.2米,然后他將速度提高到原來的1.5倍,再行走2秒到達(dá)點(diǎn)H,此時(shí)他(GH)在同一燈光下的影長為BH(點(diǎn)C,E,G在一條直線上).
(1)請(qǐng)?jiān)趫D中畫出光源O點(diǎn)的位置,并畫出他位于點(diǎn)F時(shí)在這個(gè)燈光下的影長FM(不寫畫法)
(2)求小明原來的速度。
【答案】
(1)
解:如圖,
(2)
解:設(shè)小明原來的速度為xm/s,則CE=2xm,AM=AF﹣MF=(4x﹣1.2)m,EG=2×1.5x=3xm,BM=AB﹣AM=12﹣(4x﹣1.2)=13.2﹣4x,
∵點(diǎn)C,E,G在一條直線上,CG∥AB,
∴△OCE∽△OAM,△OEG∽△OMB,
∴=,=,
∴=,即=,
解得x=1.5,經(jīng)檢驗(yàn)x=1.5為方程的解,
∴小明原來的速度為1.5m/s.
答:小明原來的速度為1.5m/s.
【解析】(1)利用中心投影的定義畫圖;
(2)設(shè)小明原來的速度為xm/s,則CE=2xm,AM=AF﹣MF=(4x﹣1.2)m,EG=2×1.5x=3xm,BM=AB﹣AM=12﹣(4x﹣1.2)=13.2﹣4x,根據(jù)相似三角形的判定方法得到△OCE∽△OAM,△OEG∽△OMB,列出方程求解即可
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解相似三角形的應(yīng)用的相關(guān)知識(shí),掌握測高:測量不能到達(dá)頂部的物體的高度,通常用“在同一時(shí)刻物高與影長成比例”的原理解決;測距:測量不能到達(dá)兩點(diǎn)間的舉例,常構(gòu)造相似三角形求解,以及對(duì)中心投影的理解,了解手電筒、路燈和臺(tái)燈的光線可以看成是從一個(gè)點(diǎn)發(fā)出的,這樣的光線所形成的投影稱為中心投影;作一物體中心投影的方法:過投影中心與物體頂端作直線,直線與投影面的交點(diǎn)與物體的底端之間的線段即為物體的影子.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,點(diǎn)E,F(xiàn)分別是邊BC,AB上的點(diǎn),且CE=BF,連接DE,過點(diǎn)E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.
(1)請(qǐng)判斷:FG與CE的數(shù)量關(guān)系是 , 位置關(guān)系是;
(2)如圖2,若點(diǎn)E、F分別是CB、BA延長線上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請(qǐng)出判斷判斷并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種商品的進(jìn)價(jià)為40元/件,以獲利不低于25%的價(jià)格銷售時(shí),商品的銷售單價(jià)y(元/件)與銷售數(shù)量x(件)(x是正整數(shù))之間的關(guān)系如下表:
x(件) | … | 5 | 10 | 15 | 20 | … |
y(元/件) | … | 75 | 70 | 65 | 60 | … |
(1)由題意知商品的最低銷售單價(jià)是___元,當(dāng)銷售單價(jià)不低于最低銷售單價(jià)時(shí),y是x的一次函數(shù).求出y與x的函數(shù)關(guān)系式及x的取值范圍;
(2)在(1)的條件下,當(dāng)銷售單價(jià)為多少元時(shí),所獲銷售利潤最大,最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD中,E為AD的中點(diǎn),BE,CD的延長線相交于點(diǎn)F,若△DEF的面積為1,則ABCD的面積等于
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,分別延長OA,OC到點(diǎn)E,F(xiàn),使AE=CF,依次連接B,F(xiàn),D,E各點(diǎn).
(1)求證:△BAE≌△BCF
(2)若∠ABC=50°,則當(dāng)∠EBA=°時(shí),四邊形BFDE是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線l⊥AB于點(diǎn)B,點(diǎn)C在AB上,且AC:CB=2:1,點(diǎn)M是直線l上的動(dòng)點(diǎn),作點(diǎn)B關(guān)于直線CM的對(duì)稱點(diǎn)B′,直線AB′與直線CM相交于點(diǎn)P,連接PB.
(1)如圖2,若點(diǎn)P與點(diǎn)M重合,則∠PAB= , 線段PA與PB的比值為
(2)如圖3,若點(diǎn)P與點(diǎn)M不重合,設(shè)過P,B,C三點(diǎn)的圓與直線AP相交于D,連接CD,求證:①CD=CB′;②PA=2PB
(3)如圖4,若AC=2,BC=1,則滿足條件PA=2PB的點(diǎn)都在一個(gè)確定的圓上,在以下小題中選做一題:
①如果你能發(fā)現(xiàn)這個(gè)確定的圓的圓心和半徑,那么不必寫出發(fā)現(xiàn)過程,只要證明這個(gè)圓上的任意一點(diǎn)Q,都滿足QA=2QB;
②如果你不能發(fā)現(xiàn)這個(gè)確定的圓的圓心和半徑,那么請(qǐng)取出幾個(gè)特殊位置的P點(diǎn),如點(diǎn)P在直線AB上,點(diǎn)P與點(diǎn)M重合等進(jìn)行探究,求這個(gè)圓的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B,C,D在同一條直線上,點(diǎn)E,F(xiàn)分別在直線AD的兩側(cè),且AE=DF,∠A=∠D,AB=DC.
(1)求證:四邊形BFCE是平行四邊形
(2)若AD=10,DC=3,∠EBD=60°,則BE= 時(shí),四邊形BFCE是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△OAB的頂點(diǎn)A(﹣4,8)在拋物線y=ax2上,將Rt△OAB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到△OCD,邊CD與該拋物線交于點(diǎn)P,則點(diǎn)P的坐標(biāo)為
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com