【題目】如圖,在等邊△ABC中,點(diǎn)D為△ABC內(nèi)的一點(diǎn),∠ADB=120°,∠ADC=90°,將△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得△ACE,連接DE.

(1)求證:AD=DE;
(2)求∠DCE的度數(shù);
(3)若BD=1,求AD,CD的長(zhǎng).

【答案】
(1)證明:∵將△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得△ACE

∴△ABD≌△ACE,∠BAC=∠DAE,

∴AD=AE,BD=CE,∠AEC=∠ADB=120°,

∵△ABC為等邊三角形

∴∠BAC=60°

∴∠DAE=60°

∴△ADE為等邊三角形,

∴AD=DE


(2)∠ADC=90°,∠AEC=120°,∠DAE=60°

∴∠DCE=360°﹣∠ADC﹣∠AEC﹣∠DAE=90°


(3)∵△ADE為等邊三角形

∴∠ADE=60°

∴∠CDE=∠ADC﹣∠ADE=30°

又∵∠DCE=90°

∴DE=2CE=2BD=2,

∴AD=DE=2

在Rt△DCE中,


【解析】(1)利用旋轉(zhuǎn)的性質(zhì)和等邊三角形的性質(zhì)先判斷出△ADE是等邊三角形即可;(2)利用四邊形的內(nèi)角和即可求出結(jié)論;(3)先求出CD,再用勾股定理即可求出結(jié)論.
【考點(diǎn)精析】利用等腰三角形的性質(zhì)和等邊三角形的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱(chēng):等邊對(duì)等角);等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列方程,是一元二次方程的是(
①3x2+x=20,②2x2﹣3xy+4=0,③x2 =4,④x2=0,⑤x2﹣3x﹣4=0.
A.①②
B.①②④⑤
C.①③④
D.①④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,利用一面墻(墻的長(zhǎng)度不超過(guò)45m),用80m長(zhǎng)的籬笆圍一個(gè)矩形場(chǎng)地.

(1)怎樣圍才能使矩形場(chǎng)地的面積為750m2?
(2)能否使所圍矩形場(chǎng)地的面積為810m2 , 為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,點(diǎn)C為⊙O上的一點(diǎn),點(diǎn)D是 的中點(diǎn),過(guò)D作⊙O的切線交AC于E,DE=3,CE=1.

(1)求證:DE⊥AC;
(2)求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=1,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°至△A′B′C,點(diǎn)A的對(duì)應(yīng)點(diǎn)A′恰好落在AB上,求BB′的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)①若有意義,則化簡(jiǎn)=   

②化簡(jiǎn):a2=   

(2)已知|7﹣9m|+(n﹣3)2=9m﹣7﹣,求(n﹣m)2018

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知矩形ABCD,把BCD沿BD翻折,得BDG,BG,AD所在的直線交于點(diǎn)E,過(guò)點(diǎn)DDFBEBC所在直線于點(diǎn)F.

(1)如圖1,AB<AD,

①求證:四邊形BEDF是菱形;

②若AB=4,AD=8,求四邊形BEDF的面積;

(2)如圖2,若AB=8,AD=4,請(qǐng)按要求畫(huà)出圖形,并直接寫(xiě)出四邊形BEDF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們把a(bǔ)、b兩個(gè)數(shù)中較小的數(shù)記作min{a,b},直線y=kx﹣k﹣2(k<0)與函數(shù)y=min{x2﹣1、﹣x+1}的圖象有且只有2個(gè)交點(diǎn),則k的取值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠CAB交CD于F,CH⊥EF于H,連接DH,求證:

(1)EH=FH;
(2)∠CAB=2∠CDH.

查看答案和解析>>

同步練習(xí)冊(cè)答案