【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是( 。
A. 當(dāng)AB=BC時,四邊形ABCD是菱形
B. 當(dāng)AC⊥BD時,四邊形ABCD是菱形
C. 當(dāng)∠ABC=90°時,四邊形ABCD是矩形
D. 當(dāng)AC=BD時,四邊形ABCD是正方形
【答案】D
【解析】
根據(jù)鄰邊相等的平行四邊形是菱形;根據(jù)所給條件可以證出鄰邊相等;根據(jù)有一個角是直角的平行四邊形是矩形;根據(jù)對角線相等的平行四邊形是矩形.
A. 根據(jù)鄰邊相等的平行四邊形是菱形可知:四邊形ABCD是平行四邊形,當(dāng)AB=BC時,它是菱形,故本選項不符合題意;
B. 根據(jù)對角線互相垂直的平行四邊形是菱形知:當(dāng)AC⊥BD時,四邊形ABCD是菱形,故本選項不符合題意;
C. 根據(jù)有一個角是直角的平行四邊形是矩形知:當(dāng)∠ABC=90°時,四邊形ABCD是矩形,故本選項不符合題意;
D. 根據(jù)對角線相等的平行四邊形是矩形可知:當(dāng)AC=BD時,它是矩形,不是正方形,故本選項符合題意;
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣4a經(jīng)過A(﹣1,0)、C(0,4)兩點,與x軸交于另一點B.
(1)求拋物線的解析式;
(2)求拋物線的頂點坐標
(3)已知點D(m,m+1)在第一象限的拋物線上,求點D的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為大力弘揚“奉獻、友愛、互助、進步”的志愿服務(wù)精神,傳播“奉獻他人、提升自我”的志愿服務(wù)理念,東營市某中學(xué)利用周末時間開展了“助老助殘、社區(qū)服務(wù)、生態(tài)環(huán)保、網(wǎng)絡(luò)文明”四個志愿服務(wù)活動(每人只參加一個活動),九年級某班全班同學(xué)都參加了志愿服務(wù),班長為了解志愿服務(wù)的情況,收集整理數(shù)據(jù)后,繪制以下不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)求該班的人數(shù);
(2)請把折線統(tǒng)計圖補充完整;
(3)求扇形統(tǒng)計圖中,網(wǎng)絡(luò)文明部分對應(yīng)的圓心角的度數(shù);
(4)小明和小麗參加了志愿服務(wù)活動,請用樹狀圖或列表法求出他們參加同一服務(wù)活動的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C,D在線段AB上,△PCD是等邊三角形,△ACP∽△PDB,
(1)請你說明CD2=ACBD;
(2)求∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對角線AC,BD相交于點O,點E,F(xiàn)在BD上,BE=DF,
(1)求證:AE=CF;
(2)若AB=3,∠AOD=120°,求矩形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在正方形ABCD中,點E在邊CD上,AQ⊥BE于點Q,DP⊥AQ于點P.
(1)求證:AP=BQ;
(2)在不添加任何輔助線的情況下,請直接寫出圖中四對線段,使每對中較長線段與較短線段長度的差等于PQ的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①所示,在直角梯形ABCD中,∠BAD=90°,E是直線AB上一點,過E作直線l∥BC,交直線CD于點F.將直線l向右平移,設(shè)平移距離BE為t(t≥0),直角梯形ABCD被直線l掃過的面積(圖中陰影部分)為S,S關(guān)于t的函數(shù)圖象如圖②所示,OM為線段,MN為拋物線的一部分,NQ為射線,N點橫坐標為4.
信息讀取
(1)梯形上底的長AB= ;
(2)直角梯形ABCD的面積= ;
圖象理解
(3)寫出圖②中射線NQ表示的實際意義;
(4)當(dāng)2<t<4時,求S關(guān)于t的函數(shù)關(guān)系式;
問題解決
(5)當(dāng)t為何值時,直線l將直角梯形ABCD分成的兩部分面積之比為1:3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于一個函數(shù),如果它的自變量 x 與函數(shù)值 y 滿足:當(dāng)1≤x≤1 時,1≤y≤1,則稱這個函數(shù)為“閉 函數(shù)”.例如:y=x,y=x 均是“閉函數(shù)”. 已知 y ax2 bx c(a0) 是“閉函數(shù)”,且拋物線經(jīng)過點 A(1,1)和點 B(1,1),則 a 的取值范圍是______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖末-10,在平面直角坐標系中,直線y=x+1與y軸交于點A,與x軸交于點B,點C和點B關(guān)于y軸對稱.
(1)求△ABC內(nèi)切圓的半徑;
(2)過O、A兩點作⊙M,分別交直線AB、AC于點D、E,求證:AD+AE是定值,并求其值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com