若拋物線(xiàn)y=a(x-1)2+k上有一點(diǎn)A(3,5),則點(diǎn)A關(guān)于對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn)A′的坐標(biāo)為_(kāi)_______.
(-1,5)
分析:先根據(jù)拋物線(xiàn)的關(guān)系式找到該拋物線(xiàn)的對(duì)稱(chēng)軸,然后根據(jù)對(duì)稱(chēng)的性質(zhì)求點(diǎn)Q的坐標(biāo).
解答:∵拋物線(xiàn)y=a(x-1)2+k,
∴該拋物線(xiàn)的對(duì)稱(chēng)軸為x=1;
∵點(diǎn)A(3,5)與點(diǎn)A′關(guān)于該拋物線(xiàn)的對(duì)稱(chēng)軸對(duì)稱(chēng),
∴點(diǎn)A′(-1,5).
故答案為:(-1,5).
點(diǎn)評(píng):本題主要考查了二次函數(shù)的性質(zhì)及坐標(biāo)與圖形變化-對(duì)稱(chēng).二次函數(shù)y=a(x-h)2+k,它的頂點(diǎn)坐標(biāo)及對(duì)稱(chēng)軸如下:
頂點(diǎn)坐標(biāo)(h,k);對(duì)稱(chēng)軸為x=h;因此,研究拋物線(xiàn) y=ax2+bx+c(a≠0)的圖象,通過(guò)配方,將一般式化為y=a(x-h)2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱(chēng)軸,拋物線(xiàn)的大體位置就很清楚了.這給畫(huà)圖象提供了方便.