如圖,以AB為直徑的半圓O交AC于點D,且點D為AC的中點,DE⊥BC于點E,AE交半圓O于點F,BF的延長線交DE于點G.
(1)求證:DE為半圓O的切線;
(2)若GE=1,BF=
3
2
,求EF的長.
(1)證明:連接OD,如圖,
∵AB為半圓O的直徑,D為AC的中點,
∴OD為△ABC的中位線,
∴ODBC,
∵DE⊥BC,
∴DE⊥DO,
又∵點D在圓上,
∴DE為半圓O的切線;

(2)∵AB為半圓O的直徑,
∴∠AFB=90°,
而DE⊥BC,
∴∠GEB=∠GFE=90°,
∵∠BGE=∠EGF,
∴△BGE△EGF
GE
GB
=
GF
GE
,
∴GE2=GF•GB=GF(GF+BF)
∵GE=1,BF=
3
2
,
∴GF=
1
2
,
在Rt△EGF中,EF=
GE2-GF2
=
3
2
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:單選題

Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C為圓心,2.5cm為半徑的圓與AB的位置關(guān)系是( 。
A.相離B.相交C.相切D.無法確定

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,CA,CB分別與⊙O相切于點D,B,圓心O在AB上,AB與⊙O的另一交點為E,AE=2,⊙O的半徑為1,則BC的長為( 。
A.
2
B.2
2
C.
2
2
D.
3

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,B為線段AD上一點,△ABC和△BDE都是等邊三角形,連接CE并延長交AD的延長線于點F,△ABC的外接圓⊙O交CF于點M.
(1)求證:BE是⊙O的切線;
(2)求證:AC2=CM•CF;
(3)若CM=
2
7
7
,MF=
12
7
7
,求BD;
(4)若過點D作DGBE交EF于點G,過G作GHDE交DF于點H,則易知△DGH是等邊三角形.設(shè)等邊△ABC、△BDE、△DGH的面積分別為S1、S2、S3,試探究S1、S2、S3之間的等量關(guān)系,請直接寫出其結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,矩形ABCD的邊AD、AB分別與⊙O相切于點E、F,AE=
3

(1)求
EF
的長;
(2)若AD=
3
+5
,直線MN分別交射線DA、DC于點M、N,∠DMN=60°,將直線MN沿射線DA方向平移,設(shè)點D到直線的距離為d,當時1≤d≤4,請判斷直線MN與⊙O的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,AB是⊙O的直徑,直線l與⊙O相切于點C,AD⊥l,垂足是D.
求證:AC平分∠DAB.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,直角坐標系中直線AB交x軸,y軸于點A(4,0)與B(0,-3),現(xiàn)有一半徑為1的動圓的圓心位于原點處,以每秒1個單位的速度向右作平移運動,則經(jīng)過______秒后動圓與直線AB相切.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知:C是以AB為直徑的半圓O上一點,CH⊥AB于點H,直線AC與過B點的切線相交于點D,E為CH中點,連接AE并延長交BD于點F,直線CF交直線AB于點G.
(1)求證:①點F是BD中點;②CG是⊙O的切線;
(2)若FB=FE=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1所示,在正方形ABCD中,AB=1,
AC
是以點B為圓心,AB長為半徑的圓的一段弧,點E是邊AD上的任意一點(點E與點A、D不重合),過E作AC所在圓的切線,交邊DC于點F,G為切點.
(1)當∠DEF=45°時,求證:點G為線段EF的中點;
(2)設(shè)AE=x,F(xiàn)C=y,求y關(guān)于x的函數(shù)解析式,并寫出函數(shù)的定義域;
(3)圖2所示,將△DEF沿直線EF翻折后得△D1EF,當EF=
5
6
時,討論△AD1D與△ED1F是否相似,如果相似,請加以證明;如果不相似,只要求寫出結(jié)論,不要求寫出理由.

查看答案和解析>>

同步練習冊答案