如圖1所示,在正方形ABCD中,AB=1,
AC
是以點(diǎn)B為圓心,AB長為半徑的圓的一段弧,點(diǎn)E是邊AD上的任意一點(diǎn)(點(diǎn)E與點(diǎn)A、D不重合),過E作AC所在圓的切線,交邊DC于點(diǎn)F,G為切點(diǎn).
(1)當(dāng)∠DEF=45°時(shí),求證:點(diǎn)G為線段EF的中點(diǎn);
(2)設(shè)AE=x,F(xiàn)C=y,求y關(guān)于x的函數(shù)解析式,并寫出函數(shù)的定義域;
(3)圖2所示,將△DEF沿直線EF翻折后得△D1EF,當(dāng)EF=
5
6
時(shí),討論△AD1D與△ED1F是否相似,如果相似,請(qǐng)加以證明;如果不相似,只要求寫出結(jié)論,不要求寫出理由.
(1)證明:∵∠DEF=45°,
∴∠DFE=90°-∠DEF=45°.
∴∠DFE=∠DEF.
∴DE=DF.
又∵AD=DC,
∴AE=FC.
∵AB是圓B的半徑,AD⊥AB,
∴AD切圓B于點(diǎn)A.
同理:CD切圓B于點(diǎn)C.
又∵EF切圓B于點(diǎn)G,
∴AE=EG,F(xiàn)C=FG.
∴EG=FG,即G為線段EF的中點(diǎn).

(2)根據(jù)(1)中的線段之間的關(guān)系,得EF=x+y,DE=1-x,DF=1-y,
根據(jù)勾股定理,得:
(x+y)2=(1-x)2+(1-y)2
∴y=
1-x
1+x
(0<x<1).

(3)當(dāng)EF=
5
6
時(shí),由(2)得EF=EG+FG=AE+FC,
即x+
1-x
1+x
=
5
6
,
解得x1=
1
3
,x2=
1
2

經(jīng)檢驗(yàn)x1=
1
3
,x2=
1
2
是原方程的解.
①當(dāng)AE=
1
2
時(shí),△AD1D△ED1F,
證明:設(shè)直線EF交線段DD1于點(diǎn)H,由題意,得:
△EDF≌△ED1F,EF⊥DD1且DH=D1H.
∵AE=
1
2
,AD=1,
∴AE=ED.
∴EHAD1,∠AD1D=∠EHD=90°.
又∵∠ED1F=∠EDF=90°,
∴∠FD1D=∠AD1D.
∴D1FAD,
∴∠ADD1=∠DD1F=∠EFD=45°,
∴△ED1F△AD1D.
②當(dāng)AE=
1
3
時(shí),△ED1F與△AD1D不相似.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,以AB為直徑的半圓O交AC于點(diǎn)D,且點(diǎn)D為AC的中點(diǎn),DE⊥BC于點(diǎn)E,AE交半圓O于點(diǎn)F,BF的延長線交DE于點(diǎn)G.
(1)求證:DE為半圓O的切線;
(2)若GE=1,BF=
3
2
,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點(diǎn)D在⊙O的直徑AB的延長線上,點(diǎn)C在⊙O上,AC=CD,∠D=30°.
(l)求證:CD是⊙O的切線;
(2)若CD=3
3
,求扇形0AC的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,弦DE垂直平分半徑OA,C為垂足,DE=3,連接BD,過點(diǎn)E作EMBD,交BA的延長線于點(diǎn)M.
(1)求⊙O的半徑;
(2)求證:EM是⊙O的切線;
(3)若弦DF與直徑AB相交于點(diǎn)P,當(dāng)∠APD=45°時(shí),求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是⊙O的切線,A為切點(diǎn),AC是⊙O的弦,過O作OH⊥AC于點(diǎn)H.若AC=8,AB=12,BO=13,求:
(1)⊙O的半徑;
(2)把
AC
沿弦AC向上翻轉(zhuǎn)180°,問翻轉(zhuǎn)后的
AC
是否經(jīng)過圓心O,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知AB是⊙O的直徑,點(diǎn)C在⊙O上,過點(diǎn)C的直線與AB的延長線交于點(diǎn)P,AC=PC,∠COB=2∠PCB.
(1)求證:PC是⊙O的切線;
(2)求證:BC=
1
2
AB;
(3)點(diǎn)M是
AB
的中點(diǎn),CM交AB于點(diǎn)N,若AB=4,求MN•MC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,⊙O和⊙O′都經(jīng)過點(diǎn)A和點(diǎn)B,點(diǎn)P在BA的延長線上,過P作⊙O的割線PCD交⊙O于C、D,作⊙O′的切線PE切⊙O′于E,若PC=4,CD=5,則PE等于( 。
A.6B.2
5
C.20D.36

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AO是△ABC的中線,⊙O與AB邊相切于點(diǎn)D.
(1)要使⊙O與AC邊也相切,應(yīng)增加條件______;(任寫一個(gè))
(2)說明你(1)中添加的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC中,以BC上一點(diǎn)O為圓心,以O(shè)B為半徑的圓交AB于點(diǎn)M,交BC于點(diǎn)N,且BA•BM=BC•BN.
(1)求證:AC⊥BC;
(2)如果CM是⊙O的切線,N為OC的中點(diǎn),當(dāng)AC=4時(shí),求AB的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案