如圖,△ABC中,AB=AC,CD⊥AB,BE⊥AC,則
(1)AD=
AE
AE
,BE=
CD
CD
;
(2)證明(1)的結(jié)論.
分析:(1)根據(jù)全等三角形的性質(zhì)直接得出結(jié)論;
(2)根據(jù)ASA定理得出△ABE≌△ACD即可.
解答:解:(1)AD=AE,BE=CD;

(2)∵AB=AC,CD⊥AB,BE⊥AC,
∴∠ADE=∠AEB=90°,
∴∠A+∠ACD=∠A+∠ABE,
在△ABE與△ACD中,
∠A=∠A
AB=AC
∠ACD=∠ABE

∴△ABE≌△ACD,
∴AD=AE,BE=CD.
點評:本題考查的是等腰三角形的性質(zhì)及全等三角形的判定與性質(zhì),熟知全等三角形的判定定理是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關(guān)系,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案