【題目】為了解市民“獲取新聞的最主要途徑”,某市記者開展了一次抽樣調(diào)查,要求被調(diào)查的市民必選且只能選一項(xiàng).根據(jù)調(diào)查結(jié)果繪制了如圖尚不完整的扇形統(tǒng)計(jì)圖,其中將“手機(jī)上網(wǎng)”和“電腦上網(wǎng)”作為“獲取新聞的最主要途徑”的市民分別有600人和510人,并且扇形統(tǒng)計(jì)圖中,滿足.請(qǐng)根據(jù)所給信息,解答下列問(wèn)題:

1)請(qǐng)計(jì)算扇形統(tǒng)計(jì)圖中“電腦上網(wǎng)”所在扇形的圓心角的度數(shù);

2)求扇形統(tǒng)計(jì)圖中,的值;

3)若該市約有200萬(wàn)人,請(qǐng)你估計(jì)其中將“手機(jī)上網(wǎng)”和“報(bào)紙”作為“獲取新聞的最主要途徑”的總?cè)藬?shù).

【答案】191.8°;(2m=14n=11;(388萬(wàn)

【解析】

1)先求出抽查的總?cè)藬?shù),然后求出電腦上網(wǎng)的百分比,即可求出圓心角的度數(shù);

2)根據(jù)題意,列出關(guān)于mn的方程組,解方程,即可得到答案;

3)由總?cè)藬?shù)乘以所占的百分比,即可得到答案.

解:(1 (),,

電腦上網(wǎng)所在扇形的圓心角的度數(shù)為:

2)根據(jù)題意,得

解得: ;

3 (萬(wàn)人),

∴總?cè)藬?shù)約有88萬(wàn)人.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,且AB6.點(diǎn)C是⊙O上的一動(dòng)點(diǎn),連接AC,BC,在AC的延長(zhǎng)線上取一點(diǎn)D,使得∠CBD=∠DAB,點(diǎn)GDB的中點(diǎn),點(diǎn)EBG的中點(diǎn),連接AEBC于點(diǎn)F.

(1)試判斷直線BD與⊙O的位置關(guān)系,并說(shuō)明理由;

(2)當(dāng)∠CGB60°時(shí),求的長(zhǎng);

(3)當(dāng)AECG時(shí),連接GF,若AF4,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四種說(shuō)法:

如果一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,那么這兩個(gè)角相等;

2020減去它的,再減去余下的,再減去余下的,再減去余下的,……,依此類推,直到最后減去余下的,最后的結(jié)果是1

實(shí)驗(yàn)的次數(shù)越多,頻率越靠近理論概率;

對(duì)于任何實(shí)數(shù)x、y,多項(xiàng)式的值不小于2.其中正確的個(gè)數(shù)是()

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線經(jīng)過(guò)點(diǎn),與軸交于點(diǎn),點(diǎn)是該拋物線上一點(diǎn),且在第四象限內(nèi),連接

1)求拋物線的函數(shù)解析式,并寫出對(duì)稱軸;

2)當(dāng)時(shí),求點(diǎn)的坐標(biāo);

3)在(2)的條件下,如果點(diǎn)軸上一點(diǎn),點(diǎn)是拋物線上一點(diǎn),當(dāng)以點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),請(qǐng)直接寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】商店購(gòu)進(jìn)一批單價(jià)為20元的T恤,經(jīng)試銷發(fā)現(xiàn),每天銷售件數(shù)y(件)與銷售價(jià)格x(元/件)滿足如圖的一次函數(shù)關(guān)系.

1)求yx之間函數(shù)關(guān)系式(不要求寫出x取值范圍);

2)在不考慮積壓等因素情況下,銷售價(jià)格定為多少時(shí),每天獲得利潤(rùn)W最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在ABC中,AB=13,BC=12,點(diǎn)D,E分別是AB,BC的中點(diǎn),連接DE,CD,如果DE=2.5,那么ACD的周長(zhǎng)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AD=AB,BAD的平分線交BC于點(diǎn)E,DHAE于點(diǎn)H,連接BH并延長(zhǎng)交CD于點(diǎn)F,連接DEBF于點(diǎn)O,下列結(jié)論:①∠AED=CED;OE=OD;BH=HF;BC﹣CF=2HE;AB=HF,其中正確的有(

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=6,BC=ECD邊上一點(diǎn),將△BCE沿BE折疊,點(diǎn)C的對(duì)應(yīng)點(diǎn)為點(diǎn)F,連接AF,若,則CE=__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,AB=AC,CG⊥BABA的延長(zhǎng)線于點(diǎn)G.一等腰直角三角尺按如圖1所示的位置擺放,該三角尺的直角頂點(diǎn)為F,一條直角邊與AC邊在一條直線上,另一條直角邊恰好經(jīng)過(guò)點(diǎn)B

1)在圖1中請(qǐng)你通過(guò)觀察、測(cè)量BFCG的長(zhǎng)度,猜想并寫出BFCG滿足的數(shù)量關(guān)系,然后證明你的猜想;

2)當(dāng)三角尺沿AC方向平移到圖2所示的位置時(shí),一條直角邊仍與AC邊在同一直線上,另一條直角邊交BC邊于點(diǎn)D,過(guò)點(diǎn)DDE⊥BA于點(diǎn)E.此時(shí)請(qǐng)你通過(guò)觀察、測(cè)量DE、DFCG 的長(zhǎng)度,猜想并寫出DEDFCG之間滿足的數(shù)量關(guān)系,然后證明你的猜想;

3)當(dāng)三角尺在(2)的基礎(chǔ)上沿AC方向繼續(xù)平移到圖3所示的位置(點(diǎn)F在線段AC上,且點(diǎn)F與點(diǎn)C不重合)時(shí),(2)中的猜想是否仍然成立?(不用說(shuō)明理由)

查看答案和解析>>

同步練習(xí)冊(cè)答案