當(dāng)x為實(shí)數(shù)時(shí),求函數(shù)的最值?
【答案】分析:將原函數(shù)轉(zhuǎn)化為關(guān)于自變量的二次方程,應(yīng)用二次方程的根的判別式△=b2-4ac≥0,從而確定原函數(shù)的值域.
解答:解:由函數(shù),得
(y-1)x2+2(y+1)x+y+2=0,①
∵x為實(shí)數(shù),
∴方程①有實(shí)數(shù)解,
∴△=b2-4ac≥0,即4(y+1)2-4(y-1)(y+2)≥0,
∴y≥-3;
∴函數(shù)的最小值是-3.
點(diǎn)評(píng):本題考查了函數(shù)最值問(wèn)題.解題時(shí),將函數(shù)關(guān)系轉(zhuǎn)化為二次方程F(x,y)=0,由于方程有實(shí)數(shù)解,故其判別式為非負(fù)數(shù),可求得函數(shù)的值域.常適用于形如“y=或y=ax+b±”的函數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)x為實(shí)數(shù)時(shí),求函數(shù)y=
x2-2x-2x2+2x+1
的最值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于x的二次三項(xiàng)式ax2+bx+c(a>0).
(1)當(dāng)c<0時(shí),求函數(shù)y=-2|ax2+bx+c|-1的最大值;
(2)若不論k為任何實(shí)數(shù),直線y=k(x-1)-
k24
與拋物線y=ax2+bx+c有且只有一個(gè)公共點(diǎn),求a,b,c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

對(duì)于x的二次三項(xiàng)式ax2+bx+c(a>0).
(1)當(dāng)c<0時(shí),求函數(shù)y=-2|ax2+bx+c|-1的最大值;
(2)若不論k為任何實(shí)數(shù),直線數(shù)學(xué)公式與拋物線y=ax2+bx+c有且只有一個(gè)公共點(diǎn),求a,b,c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

當(dāng)x為實(shí)數(shù)時(shí),求函數(shù)y=
x2-2x-2
x2+2x+1
的最值?

查看答案和解析>>

同步練習(xí)冊(cè)答案