(2005•漳州)如圖:已知在Rt△ABC中,∠ABC=90°,∠C=60°,邊AB=6cm.
(1)求邊AC和BC的值;
(2)求以直角邊AB所在的直線l為軸旋轉(zhuǎn)一周所得的幾何體的側(cè)面積.(結(jié)果用含π的代數(shù)式表示)

【答案】分析:(1)根據(jù)三角函數(shù)值可求出直角三角形的邊長.
(2)以直角邊AB所在的直線l為軸旋轉(zhuǎn)一周所得的幾何體為圓錐,圓錐側(cè)面積=×底面周長×母線長.
解答:解:(1)在Rt△ABC中,∵∠C=60°,AB=6cm,
∴AC==cm,BC=tan60°×AB=cm.

(2)所求的圓錐側(cè)面積S=•(2π•2)•4=24π(cm2).
點評:本題應(yīng)掌握圓錐側(cè)面積的求法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年廣東省深圳市中考數(shù)學(xué)模擬試卷一(解析版) 題型:解答題

(2005•漳州)如圖,已知拋物線的頂點坐標(biāo)為M(1,4),且經(jīng)過點N(2,3),與x軸交于A、B兩點(點A在點B左側(cè)),與y軸交于點C.
(1)求拋物線的解析式及點A、B、C的坐標(biāo);
(2)若直線y=kx+t經(jīng)過C、M兩點,且與x軸交于點D,試證明四邊形CDAN是平行四邊形;
(3)點P在拋物線的對稱軸x=1上運(yùn)動,請?zhí)剿鳎涸趚軸上方是否存在這樣的P點,使以P為圓心的圓經(jīng)過A、B兩點,并且與直線CD相切?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2005•漳州)如圖,已知拋物線的頂點坐標(biāo)為M(1,4),且經(jīng)過點N(2,3),與x軸交于A、B兩點(點A在點B左側(cè)),與y軸交于點C.
(1)求拋物線的解析式及點A、B、C的坐標(biāo);
(2)若直線y=kx+t經(jīng)過C、M兩點,且與x軸交于點D,試證明四邊形CDAN是平行四邊形;
(3)點P在拋物線的對稱軸x=1上運(yùn)動,請?zhí)剿鳎涸趚軸上方是否存在這樣的P點,使以P為圓心的圓經(jīng)過A、B兩點,并且與直線CD相切?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年陜西省西安市師大附中中考數(shù)學(xué)模擬試卷(楊麗敏)(解析版) 題型:解答題

(2005•漳州)如圖,已知拋物線的頂點坐標(biāo)為M(1,4),且經(jīng)過點N(2,3),與x軸交于A、B兩點(點A在點B左側(cè)),與y軸交于點C.
(1)求拋物線的解析式及點A、B、C的坐標(biāo);
(2)若直線y=kx+t經(jīng)過C、M兩點,且與x軸交于點D,試證明四邊形CDAN是平行四邊形;
(3)點P在拋物線的對稱軸x=1上運(yùn)動,請?zhí)剿鳎涸趚軸上方是否存在這樣的P點,使以P為圓心的圓經(jīng)過A、B兩點,并且與直線CD相切?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年福建省漳州市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2005•漳州)如圖,已知拋物線的頂點坐標(biāo)為M(1,4),且經(jīng)過點N(2,3),與x軸交于A、B兩點(點A在點B左側(cè)),與y軸交于點C.
(1)求拋物線的解析式及點A、B、C的坐標(biāo);
(2)若直線y=kx+t經(jīng)過C、M兩點,且與x軸交于點D,試證明四邊形CDAN是平行四邊形;
(3)點P在拋物線的對稱軸x=1上運(yùn)動,請?zhí)剿鳎涸趚軸上方是否存在這樣的P點,使以P為圓心的圓經(jīng)過A、B兩點,并且與直線CD相切?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年福建省漳州市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:填空題

(2005•漳州)如圖是一個被等分成12個扇形的轉(zhuǎn)盤.請在轉(zhuǎn)盤上選出若干個扇形涂上斜線(涂上斜線表示陰影區(qū)域,其中有一個扇形已涂),使得自由轉(zhuǎn)動這個轉(zhuǎn)盤,當(dāng)它停止轉(zhuǎn)動時,指針落在陰影區(qū)域的概率為   

查看答案和解析>>

同步練習(xí)冊答案