【題目】已知二次函數(shù) 的圖象與x軸交于A、B兩點(diǎn),點(diǎn)A的坐標(biāo)為 ,求點(diǎn)B的坐標(biāo).

【答案】解:∵二次函數(shù) 的圖象與x軸交于點(diǎn)A ,

∴二次函數(shù)解析式為

∴二次函數(shù) 與x軸的交點(diǎn)B的坐標(biāo)為


【解析】把點(diǎn)A坐標(biāo)代入二次函數(shù)解析式,求出b的值,得到二次函數(shù)解析式,再用因式分解法,求出點(diǎn)B的坐標(biāo).
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解拋物線與坐標(biāo)軸的交點(diǎn)的相關(guān)知識(shí),掌握一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒(méi)有交點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AD平分∠BAC,C=90°,DEAB于點(diǎn)E,點(diǎn)FAC上,BD=DF.

1)求證:CF=EB.

2AB=12AF=8,求CF的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x的不等式x﹣ <1的解集為x<1,則關(guān)于x的一元二次方程x2+ax+1=0根的情況是(
A.有兩個(gè)相等的實(shí)數(shù)根
B.有兩個(gè)不相等的實(shí)數(shù)根
C.無(wú)實(shí)數(shù)根
D.無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD為等腰梯形,AD∥BC,AB=CD,AD= ,E為CD中點(diǎn),連接AE,且AE=2 ,∠DAE=30°,作AE⊥AF交BC于F,則BF=( )

A.1
B.3﹣
C. ﹣1
D.4﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一元二次方程x2﹣2x﹣ =0的某個(gè)根,也是一元二次方程x2﹣(k+2)x+ =0的根,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,一張邊長(zhǎng)為的正方形硬紙板,把它的四個(gè)角都剪去一個(gè)邊長(zhǎng)為工(為正整數(shù))的小正方形,然后把它折成一個(gè)無(wú)蓋的長(zhǎng)方體,設(shè)長(zhǎng)方體的容積為,請(qǐng)回答下列問(wèn)題:

1)用含有的代數(shù)式表示,則

2)完成下表:

1

2

3

4

5

6

7

3)觀察上表,當(dāng)取什么值時(shí),容積的值最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①是一個(gè)長(zhǎng)為、寬為的長(zhǎng)方形,沿圖中虛線用剪刀平均分成四塊小長(zhǎng)方形,然后按圖②的形狀拼成一個(gè)正方形.

1)圖②中的陰影部分的面積為

2)觀察圖②,請(qǐng)你寫(xiě)出代數(shù)式之間的等量關(guān)系式

3)若

4)實(shí)際上有許多代數(shù)恒等式可以用圖形的面積來(lái)表示.如圖③,它表示

5)試畫(huà)出一個(gè)幾何圖形,使它的面積能表示

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系xoy中,一次函數(shù)y= x+3的圖象與x軸和y軸交于A、B兩點(diǎn),將△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得到△A′OB′.

(1)求直線A′B′的解析式;
(2)若直線A′B′與直線AB相交于點(diǎn)C,求SABC:SABO的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點(diǎn)E,F(xiàn)分別在AD,BC上,將紙片ABCD沿直線EF折疊,點(diǎn)C落在AD上的一點(diǎn)H處,點(diǎn)D落在點(diǎn)G處,有以下四個(gè)結(jié)論:
①四邊形CFHE是菱形;
②EC平分∠DCH;
③線段BF的取值范圍為3≤BF≤4;
④當(dāng)點(diǎn)H與點(diǎn)A重合時(shí),EF=2
以上結(jié)論中,你認(rèn)為正確的有 . (填序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案