【題目】已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸為直線x=2,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(4,0),其部分圖象如圖所示,下列結(jié)論: ①拋物線過(guò)原點(diǎn);
②4a+b+c=0;
③a﹣b+c<0;
④拋物線的頂點(diǎn)坐標(biāo)為(2,b);
⑤當(dāng)x<2時(shí),y隨x增大而增大.
其中結(jié)論正確的是( )
A.①②③
B.③④⑤
C.①②④
D.①④⑤
【答案】C
【解析】解:①∵拋物線y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸為直線x=2,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(4,0), ∴拋物線與x軸的另一交點(diǎn)坐標(biāo)為(0,0),結(jié)論①正確;
②∵拋物線y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸為直線x=2,且拋物線過(guò)原點(diǎn),
∴﹣ =2,c=0,
∴b=﹣4a,c=0,
∴4a+b+c=0,結(jié)論②正確;
③∵當(dāng)x=﹣1和x=5時(shí),y值相同,且均為正,
∴a﹣b+c>0,結(jié)論③錯(cuò)誤;
④當(dāng)x=2時(shí),y=ax2+bx+c=4a+2b+c=(4a+b+c)+b=b,
∴拋物線的頂點(diǎn)坐標(biāo)為(2,b),結(jié)論④正確;
⑤觀察函數(shù)圖象可知:當(dāng)x<2時(shí),yy隨x增大而減小,結(jié)論⑤錯(cuò)誤.
綜上所述,正確的結(jié)論有:①②④.
故選C.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系和拋物線與坐標(biāo)軸的交點(diǎn),掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開(kāi)口方向:a>0時(shí),拋物線開(kāi)口向上; a<0時(shí),拋物線開(kāi)口向下b與對(duì)稱(chēng)軸有關(guān):對(duì)稱(chēng)軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c);一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒(méi)有交點(diǎn).即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一塊正方形ABCD木板上要貼三種不同的墻紙,正方形EFCG部分貼A型墻紙,△ABE部分貼B型墻紙,其余部分貼C型墻紙.A型、B型、C型三種墻紙的單價(jià)分別為每平方米60元、80元、40元.
(1)探究1:如果木板邊長(zhǎng)為1米,F(xiàn)C= 米,則一塊木板用墻紙的費(fèi)用需元;
(2)探究2:如果木板邊長(zhǎng)為2米,正方形EFCG的邊長(zhǎng)為x米,一塊木板需用墻紙的費(fèi)用為y元,
①用含x的代數(shù)式表示y(寫(xiě)過(guò)程).
②如果一塊木板需用墻紙的費(fèi)用為225元,求正方形EFCG的邊長(zhǎng)為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明從家出發(fā),沿一條直道跑步,經(jīng)過(guò)一段時(shí)間原路返回,剛好在第回到家中.設(shè)小明出發(fā)第時(shí)的速度為,離家的距離為,與之間的函數(shù)關(guān)系如圖所示(圖中的空心圈表示不包含這一點(diǎn)).
(1)小明出發(fā)第時(shí)離家的距離為_(kāi)_____m;
(2)當(dāng)時(shí),求與之間的函數(shù)表達(dá)式;
(3)直接寫(xiě)出與之間的函數(shù)關(guān)系式并畫(huà)出圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度數(shù).
解:∵EF∥AD(已知)
∴∠2=_________( )
∵∠1=∠2(已知)
∴∠1=__________( )
∴DG∥BA ( )
又∵∠BAC=70°(已知)
∴∠AGD=_________°( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在求的值時(shí),小林發(fā)現(xiàn):從第二個(gè)加數(shù)起每一個(gè)加數(shù)都是前一個(gè)加數(shù)的6倍,于是她設(shè):……①
然后在①式的兩邊都乘以6,得:……②
②-①得,即,所以.
得出答案后,愛(ài)動(dòng)腦筋的小林想:如果把“6”換成字母“a”(a≠0且a≠1),能否求出的值?你的答案是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a、b、c是常數(shù),且a≠0)的圖象如圖所示,下列結(jié)論錯(cuò)誤的是( )
A.4ac<b2
B.abc<0
C.b+c>3a
D.a<b
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為正方形,DE∥AC且CE=CA,直線EC交DA延長(zhǎng)線于F.
(1)若CD=6,求DE的長(zhǎng);
(2)求證:AE=AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:
①4ac<b2;
②方程ax2+bx+c=0的兩個(gè)根是x1=﹣1,x2=3;
③3a+c>0
④當(dāng)y>0時(shí),x的取值范圍是﹣1≤x<3
⑤當(dāng)x<0時(shí),y隨x增大而增大
其中結(jié)論正確的個(gè)數(shù)是( 。
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=ax2+bx+c的頂點(diǎn)為D(﹣1,2),與x軸的一個(gè)交點(diǎn)A在點(diǎn)(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結(jié)論:①b2﹣4ac<0;②當(dāng)x>﹣1時(shí),y隨x增大而減。虎踑+b+c<0;④若方程ax2+bx+c﹣m=0沒(méi)有實(shí)數(shù)根,則m>2;、3a+c<0.其中正確結(jié)論的個(gè)數(shù)是( )
A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com