【題目】2018年秋,珊瑚中學(xué)開啟“珊中大閱讀”活動,為了充實漂流書吧藏書,號召全校學(xué)生捐書,得到各班的大力支持.同時,本部校區(qū)的兩個年級組也購買藏書充實學(xué)校圖書室,初二年級組購買了甲、乙兩種自然科學(xué)書籍若干本,用去8315;初一年級買了A、B兩種文學(xué)書籍若干本,用去6138元。其中A、B的數(shù)量分別與甲、乙的數(shù)量相等,且甲種書與B種書的單價相同,乙種書與A種書的單價相同.若甲種書的單價比乙種書的單價多7,則甲種書籍比乙種書籍多買了_____________.

【答案】311

【解析】

根據(jù)已知條件設(shè)出甲乙的單價和數(shù)量,根據(jù)甲乙一共用去8315, A、B一共用去6138元組成方程組,整理方程組即可解題.

設(shè)乙的單價為x元/本,則甲為(7+x)元/本,甲購買了a本,乙買了b本,

∴A的單價為x元/本,B為(7+x)元/本, A購買了a本,B買了b本,

依題意得

①-②:7a-7b=2177,

∴a-b=311,

即甲種書籍比乙種書籍多買了311本.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,對“隔離直線”給出如下定義:
點P(x,m)是圖形G1上的任意一點,點Q(x,n)是圖形G2上的任意一點,若存在直線l:kx+b(k≠0)滿足m≤kx+b且n≥kx+b,則稱直線l:y=kx+b(k≠0)是圖形G1與G2的“隔離直線”.
如圖1,直線l:y=﹣x﹣4是函數(shù)y= (x<0)的圖象與正方形OABC的一條“隔離直線”.

(1)在直線y1=﹣2x,y2=3x+1,y3=﹣x+3中,是圖1函數(shù)y= (x<0)的圖象與正方形OABC的“隔離直線”的為;
請你再寫出一條符合題意的不同的“隔離直線”的表達式:
(2)如圖2,第一象限的等腰直角三角形EDF的兩腰分別與坐標軸平行,直角頂點D的坐標是( ,1),⊙O的半徑為2.是否存在△EDF與⊙O的“隔離直線”?若存在,求出此“隔離直線”的表達式;若不存在,請說明理由;

(3)正方形A1B1C1D1的一邊在y軸上,其它三邊都在y軸的右側(cè),點M(1,t)是此正方形的中心.若存在直線y=2x+b是函數(shù)y=x2﹣2x﹣3(0≤x≤4)的圖象與正方形A1B1C1D1的“隔離直線”,請直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在下列條件中,不能作為判斷ABD≌△BAC的條件是( )

A. D=C,BAD=ABC B. BAD=ABC,ABD=BAC

C. BD=AC,BAD=ABC D. AD=BC,BD=AC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,我們定義點P(a,b)的“變換點”為Q.且規(guī)定:當a≥b時,Q為(b,﹣a);當a<b時,Q為(a,﹣b).
(1)點(2,1)的變換點坐標為;
(2)若點A(a,﹣2)的變換點在函數(shù)y= 的圖象上,求a的值;
(3)已知直線l與坐標軸交于(6,0),(0,3)兩點.將直線l上所有點的變換點組成一個新的圖形記作M. 判斷拋物線y=x2+c與圖形M的交點個數(shù),以及相應(yīng)的c的取值范圍,請直接寫出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校合唱團有30名成員,下表是合唱團成員的年齡分布統(tǒng)計表:

年齡(單位:歲)

13

14

15

16

頻數(shù)(單位:名)

5

15

x

10﹣x

對于不同的x,下列關(guān)于年齡的統(tǒng)計量不會發(fā)生改變的是( )
A.平均數(shù)、中位數(shù)
B.平均數(shù)、方差
C.眾數(shù)、中位數(shù)
D.眾數(shù)、方差

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:( 1﹣(2﹣ 0﹣2sin60°+| ﹣2|

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1:y=﹣3x+3y軸于C,與x軸交于點D,直線l2經(jīng)過點A(4,0),且直線l1、l2交于點B(2,m).

(1)求m的值和直線l2的函數(shù)表達式;

(2)直線l2在第一象限內(nèi)的部分上有一點E,且△ADE的面積是△ADB面積的一半,求出點E的坐標,并在x軸上找一點P,使得CP+PE的值最小,求出這個最小值;

(3)若點Qy軸上一點,且△BDQ為等腰三角形,請直接寫出Q的坐標;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC 為等邊三角形,D、E 分別是邊 AC、BC 上的點,且ADCE,AE BD 相交于點 P.

(1)求∠BPE 的度數(shù);

(2)若 BFAE 于點 F,試判斷 BP PF 的數(shù)量關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠A=30°,∠B=62°,CE平分∠ACB,CD⊥ABDDF⊥CEF,求∠CDF的度數(shù).

查看答案和解析>>

同步練習冊答案