【題目】如圖,△ABC中,點(diǎn)O是AC邊上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)O作直線MN∥BC,交∠ACB的平分線于點(diǎn)E,交∠ACB的外角平分線于點(diǎn)F.
(1)判斷OE與OF的大小關(guān)系?并說(shuō)明理由;
(2)當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?并說(shuō)出你的理由;
(3)在(2)的條件下,當(dāng)△ABC滿足什么條件時(shí),四邊形AECF是正方形.直接寫出答案,不需說(shuō)明理由。
【答案】(1)OE=OF,理由詳見(jiàn)解析;(2)當(dāng)點(diǎn)O運(yùn)動(dòng)到AC的中點(diǎn)處,理由詳見(jiàn)解析;(3)∠ACB=90°時(shí).
【解析】試題分析:(1)利用角平分線的性質(zhì)得出,∠1=∠2,進(jìn)而得出,∠3=∠2,即可得出OE與OF的大小關(guān)系;
(2)首先證得四邊形AECF是平行四邊形,進(jìn)而得出∠ECF=90°,再利用矩形的判定得出即可;
(3)由(2)證明可知,當(dāng)點(diǎn)O運(yùn)動(dòng)到AC的中點(diǎn)時(shí),四邊形AECF是矩形,進(jìn)而得出AC⊥MN,即可得出答案.
試題解析:(1)OE=OF,理由如下:
因?yàn)?/span>CE平分∠ACB,所以∠1=∠2,又因?yàn)?/span>MN∥BC,所以∠1=∠3,所以∠3=∠2,所以EO=CO,同理,FO=CO,所以OE=OF.
(2)當(dāng)點(diǎn)O運(yùn)動(dòng)到AC的中點(diǎn)時(shí),四邊形AECF是矩形,理由如下:
因?yàn)?/span>OE=OF,點(diǎn)O是AC的中點(diǎn),所以四邊形AECF是平行四邊形,又因?yàn)?/span>CF平分∠BCA的外角,所以∠4=∠5,又因?yàn)?/span>∠1=∠2,所以∠1=∠2,∠2+∠4==90°,即∠ECF=90°,所以平行四邊形AECF是矩形.
(3)當(dāng)△ABC是直角三角形時(shí),即∠ACB=90°時(shí),四邊形AECF是正方形,理由如下:
由(2)證明可知,當(dāng)點(diǎn)O運(yùn)動(dòng)到AC的中點(diǎn)時(shí),四邊形AECF是矩形,又因?yàn)?/span>∠ACB=90°,CE,CN分別是∠ACB與∠ACB的外角的平分線,所以∠1=∠2=∠3=∠4=∠5=45°,所以AC⊥MN,所以四邊形AECF是正方形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一個(gè)多邊形內(nèi)角和是外角和的4倍,則這個(gè)多邊形是( )
A. 八邊形B. 九邊形C. 十邊形D. 十二邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a3b6÷a2b2=ambn , 則m和n的值分別是( 。
A.m=4,n=1
B.m=1,n=4
C.m=5,n=8
D.m=6,n=12
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校田徑運(yùn)動(dòng)會(huì)上,參加男子跳高的16名運(yùn)動(dòng)員成績(jī)?nèi)缦卤恚?/span>
成績(jī)(m) | 1.45 | 1.50 | 1.55 | 1.60 | 1.65 | 1.70 |
人數(shù) | 3 | 4 | 3 | 2 | 3 | 1 |
則這些運(yùn)動(dòng)員成績(jī)的中位數(shù)是( 。
A. 1.5B. 1.55C. 1.60D. 1.65
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】方程x(x+3)=x+3的根為( 。
A. x=﹣3 B. x=1 C. x1=1,x2=3 D. x1=1,x2=﹣3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的一元二次方程x2+ax﹣1=0的根的情況是( 。
A. 沒(méi)有實(shí)數(shù)根 B. 只有一個(gè)實(shí)數(shù)根
C. 有兩個(gè)相等的實(shí)數(shù)根 D. 有兩個(gè)不相等的實(shí)數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了抓住市文化藝術(shù)節(jié)的商機(jī),某商店決定購(gòu)進(jìn)A,B兩種藝術(shù)節(jié)紀(jì)念品.若購(gòu)進(jìn)A種紀(jì)念品8件,B種紀(jì)念品3件,需要950元;若購(gòu)進(jìn)A種紀(jì)念品5件,
B種紀(jì)念品6件,需要800元.
(1)求購(gòu)進(jìn)A,B兩種紀(jì)念品每件各需多少元?
(2)若該商店決定購(gòu)進(jìn)這兩種紀(jì)念品共100件,考慮市場(chǎng)需求和資金周轉(zhuǎn),用于購(gòu)買這100件紀(jì)念品的資金不少于7500元,但不超過(guò)7650元,那么該商店共有幾種進(jìn)貨方案?
(3)若銷售每件A種紀(jì)念品可獲利潤(rùn)20元,每件B種紀(jì)念品可獲利潤(rùn)30元,在(2)問(wèn)的各種進(jìn)貨方案中,哪一種方案獲利最大?最大利潤(rùn)是多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com