【題目】方程xx+3=x+3的根為( 。

A. x=﹣3 B. x=1 C. x1=1,x2=3 D. x1=1,x2=﹣3

【答案】D

【解析】分析:應(yīng)對方程進(jìn)行變形,提取公因式x+3,將原式化為兩式相乘的形式,再根據(jù)“兩式相乘值為0,這兩式中至少有一式值為0”來解題.

詳解:原方程變形為:x(x+3)-(x+3)=0

即:(x+3)(x-1)=0

∴x+3=0x-1=0

∴x1=1,x2=-3.

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的直角坐標(biāo)系中,解答下列問題:

(1)分別寫出A、B兩點的坐標(biāo);

(2)將△ABC向左平移3個單位長度,再向上平移5個單位長度,畫出平移后的△A1B1C1

(3)求 △A1B1C1的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算6a6÷3a2的結(jié)果為( 。
A.3a4
B.3a3
C.2a3
D.2a4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的盒子里裝有只有顏色不同的黑、白兩種球共40個,小穎做摸球?qū)嶒,她將盒子里面的球攪勻后從中隨機(jī)摸出一個球記下顏色,再把它放回盒子中,不斷重復(fù)上述過程,下表是實驗中的一組統(tǒng)計數(shù)據(jù):

摸球的次數(shù)

100

200

300

500

800

1000

3000

摸到白球的次數(shù)

65

124

178

302

481

599

1803

摸到白球的頻率

0.65

0.62

0.593

0.604

0.601

0.599

0.601

1)請估計:當(dāng)很大時,摸到白球的頻率將會接近 .(精確到0.1

2)假如你摸一次,你摸到白球的概率P(白球)=

3)試估算盒子里黑、白兩種顏色的球各有多少只?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,點O是AC邊上的一個動點,過點O作直線MN∥BC,交∠ACB的平分線于點E,交∠ACB的外角平分線于點F.

(1)判斷OE與OF的大小關(guān)系?并說明理由;

(2)當(dāng)點O運(yùn)動到何處時,四邊形AECF是矩形?并說出你的理由;

(3)在(2)的條件下,當(dāng)△ABC滿足什么條件時,四邊形AECF是正方形.直接寫出答案,不需說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的正方形網(wǎng)格中,△ABC的頂點均在格點上,請在所給直角坐標(biāo)系中按要求畫圖和解答下列問題:

1)以A點為旋轉(zhuǎn)中心,將△ABC繞點A順時針旋轉(zhuǎn)90°△AB1C1,畫出△AB1C1

2)作出△ABC關(guān)于坐標(biāo)原點O成中心對稱的△A2B2C2

3)作出點C關(guān)于x軸的對稱點P.若點P向右平移xx取整數(shù))個單位長度后落在△A2B2C2的內(nèi)部,請直接寫出x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)開展“陽光體育一小時”活動,根據(jù)學(xué)校實際情況,決定開設(shè)A:踢毽子;B:籃球;C:跳繩;D:乒乓球四種運(yùn)動項目.為了解學(xué)生最喜歡哪一種運(yùn)動項目,隨機(jī)抽取了一部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如下兩個統(tǒng)計圖.請結(jié)合圖中的信息解答下列問題:

(1)本次共調(diào)查了多少名學(xué)生?

(2)請將兩個統(tǒng)計圖補(bǔ)充完整.

(3)若該中學(xué)有1200名學(xué)生,喜歡籃球運(yùn)動項目的學(xué)生約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知BD是矩形ABCD的對角線.

(1)用直尺和圓規(guī)作線段BD的垂直平分線,分別交AD、BC于E、F(保留作圖痕跡,不寫作法和證明).

(2)連結(jié)BE,DF,問四邊形BEDF是什么四邊形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利用等式的性質(zhì)解方程的步驟:

(1)利用等式的性質(zhì)________,方程兩邊同時加(或減)同一個數(shù)(或式子)使一元一次方程左邊是________,右邊是________;

(2)利用等式的性質(zhì)________,方程兩邊同時乘未知數(shù)的系數(shù)的________,使未知數(shù)的系數(shù)化為1.

查看答案和解析>>

同步練習(xí)冊答案