【題目】(1)如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,EF分別是 BC,CD上的點(diǎn),且∠EAF=60°,探究圖中線(xiàn)段BE,EF,FD之間的數(shù)量關(guān)系.
小王同學(xué)探究此問(wèn)題的方法是延長(zhǎng)FD到點(diǎn)G,使DG=BE,連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是 ;
探索延伸:
(2)如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°,E,F分別是BC,CD上的點(diǎn),且∠EAF=∠BAD,上述結(jié)論是否仍然成立,并說(shuō)明理由.
【答案】問(wèn)題背景:BE +DF =EF;探索延伸:結(jié)論仍然成立,理由見(jiàn)解析.
【解析】
問(wèn)題背景:證明△ABE≌△ADG,可得AE=AG,再證明△AEF≌△AGF,可得EF=FG,即可解題;
探索延伸:延長(zhǎng)FD到G,使DG=BE,連接AG,根據(jù)同角的補(bǔ)角相等求出∠B=∠ADG,然后利用“邊角邊”證明△ABE和△ADG全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AE=AG,∠BAE=∠DAG,再求出∠EAF=∠GAF,然后利用“邊角邊”證明△AEF和△GAF全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得EF=GF,然后求解即可;
問(wèn)題背景:在△ABE和△ADG中,
,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∵∠EAF=∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,
∴∠EAF=∠GAF,
在△AEF和△GAF中,
,
∴△AEF≌△AGF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+DF,
∴EF=BE+DF;
故答案為:EF=BE+DF;
探索延伸: 結(jié)論仍然成立,理由如下:
如圖②,延長(zhǎng)FD到G,使DG =BE,連接AG,
∵∠B +∠ADC =180°,∠ADC +∠ADG =180°,
∴∠B =∠ADG,
在△ABE和△ADG中,
,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∵∠EAF=∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,
∴∠EAF=∠GAF,
在△AEF和△GAF中,
,
∴△AEF≌△AGF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+DF,
∴EF=BE+DF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點(diǎn)P是BC中點(diǎn),兩邊PE、PF分別交AB、AC于點(diǎn)E、F,當(dāng)∠EPF在△ABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(shí)(點(diǎn)E不與A、B重合),給出以下四個(gè)結(jié)論:①AE=CF;②△EPF是等腰直角三角形;③2S四邊形AEPF=S△ABC;④BE+CF=EF.上述結(jié)論中始終正確的有( 。
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠(chǎng)計(jì)劃生產(chǎn)A、B兩種產(chǎn)品共10件,其生產(chǎn)成本和利潤(rùn)如下表.
A種產(chǎn)品 | B種產(chǎn)品 | |
成本(萬(wàn)元/件) | 2 | 5 |
利潤(rùn)(萬(wàn)元/件) | 1 | 3 |
(1)若工廠(chǎng)計(jì)劃獲利14萬(wàn)元,問(wèn)A,B兩種產(chǎn)品應(yīng)分別生產(chǎn)多少件?
(2)若工廠(chǎng)計(jì)劃投入資金不多于44萬(wàn)元,且獲利多于14萬(wàn)元,求工廠(chǎng)的最大利潤(rùn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從甲、乙兩名射擊選手中選出一名選手參加省級(jí)比賽,現(xiàn)對(duì)他們分別進(jìn)行5次射擊測(cè)試,成績(jī)分別為(單位:環(huán))甲:5、6、7、9、8;乙:8、4、8、6、9,
(1)甲運(yùn)動(dòng)員5次射擊成績(jī)的中位數(shù)為________環(huán),極差是________環(huán);乙運(yùn)動(dòng)員射擊成績(jī)的眾數(shù)為________環(huán).
(2)已知甲的5次成績(jī)的方差為2,通過(guò)計(jì)算,判斷甲、乙兩名運(yùn)動(dòng)員誰(shuí)的成績(jī)更穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD是邊長(zhǎng)為4的正方形,點(diǎn)E在邊AD所在直線(xiàn)上,連接CE,以CE為邊,作正方形CEFG(C、E、F、G按順時(shí)針排列),連接BF.
(1)如圖1,當(dāng)點(diǎn)E與點(diǎn)A重合時(shí),請(qǐng)直接寫(xiě)出BF的長(zhǎng);
(2)如圖2,當(dāng)點(diǎn)E在線(xiàn)段AD上時(shí),AE=1,求BF的長(zhǎng);
(3)若BG3,請(qǐng)求出此時(shí)AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解不等式組 請(qǐng)結(jié)合題意填空,完成本題的解答.
(Ⅰ)解不等式①,得;
(Ⅱ)解不等式②,得;
(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來(lái):
(Ⅳ)原不等式組的解集為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,河的兩岸l1與l2相互平行,A,B是l1上的兩點(diǎn),C,D是l2上的兩點(diǎn),某人在點(diǎn)A處測(cè)得∠CAB=90°,∠DAB=30°,再沿AB方向前進(jìn)20米到達(dá)點(diǎn)E(點(diǎn)E在線(xiàn)段AB上),測(cè)得∠DEB=60°,求C,D兩點(diǎn)間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將兩個(gè)等邊△ABC和△DEF(DE>AB)如圖所示擺放,點(diǎn)D是BC上的一點(diǎn)(除B、C點(diǎn)外).把△DEF繞頂點(diǎn)D順時(shí)針旋轉(zhuǎn)一定的角度,使得邊DE、DF與△ABC的邊(除BC邊外)分別相交于點(diǎn)M、N.
(1)∠BMD和∠CDN相等嗎?
(2)畫(huà)出使∠BMD和∠CDN相等的所有情況的圖形.
(3)在(2)題中任選一種圖形說(shuō)明∠BMD和∠CDN相等的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果∠α和∠β互補(bǔ),且∠α>∠β,則下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°③(∠α+∠β);④(∠α﹣∠β).正確的有( 。
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com