【題目】已知∠AOB=100°,∠COD=40°,OE,OF分別平分∠AOD,∠BOD.
(1)如圖1,當(dāng)OA,OC重合時(shí),求∠EOF的度數(shù);
(2)若將∠COD的從圖1的位置繞點(diǎn)O順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角∠AOC=α,且0°<α<90°.
①如圖2,試判斷∠BOF與∠COE之間滿足的數(shù)量關(guān)系并說明理由.
②在∠COD旋轉(zhuǎn)過程中,請(qǐng)直接寫出∠BOE,∠COF,∠AOC之間的數(shù)量關(guān)系.
【答案】(1)∠EOF=50°;(2)①∠BOF+∠COE=90°;理由見解析;②∠COF+∠AOC﹣∠BOE=30°.
【解析】
(1)由題意得出∠AOD=∠COD=40°,∠BOD=∠AOB+∠COD=140°,由角平分線定義得出∠EOD=∠AOD=20°,∠DOF=∠BOD=70°,即可得出答案;
(2)①由角平分線定義得出∠EOD=∠AOE=∠AOD=20°+α,∠BOF=∠BOD=70°+α,求出∠COE=∠AOE﹣∠AOC=20°﹣α,即可得出答案;
②由①得∠EOD=∠AOE=20°+α,∠DOF=∠BOF=70°+α,
當(dāng)∠AOC<40°時(shí),求出∠COF=∠DOF﹣∠COD=30°+α,∠BOE=∠BOD﹣∠EOD=∠AOB+∠COD+α﹣∠EOD=120°+α,即可得出答案;
當(dāng)40°<∠AOC<90°時(shí),求出∠COF=∠DOF+∠DOC=150°﹣α,∠BOE=∠BOD﹣∠DOE=120°+,即可得出答案.
解:(1)∵OA,OC重合,
∴∠AOD=∠COD=40°,∠BOD=∠AOB+∠COD=100°+40°=140°,
∵OE平分∠AOD,OF平分∠BOD,
∴∠EOD=∠AOD=×40°=20°,∠DOF=∠BOD=×140°=70°,
∴∠EOF=∠DOF﹣∠EOD=70°﹣20°=50°;
(2)①∠BOF+∠COE=90°;理由如下:
∵OE平分∠AOD,OF平分∠BOD,
∴∠EOD=∠AOE=∠AOD=(40°+α)=20°+α,∠BOF=∠BOD=(∠AOB+∠COD+α)=(100°+40°+α)=70°+α,
∴∠COE=∠AOE﹣∠AOC=20°+α﹣α=20°﹣α,
∴∠BOF+∠COE=70°+α+20°﹣α=90°;
②由①得:∠EOD=∠AOE=20°+α,∠DOF=∠BOF=70°+α,
當(dāng)∠AOC<40°時(shí),如圖2所示:
∠COF=∠DOF﹣∠COD=70°+α﹣40°=30°+α,
∠BOE=∠BOD﹣∠EOD=∠AOB+∠COD+α﹣∠EOD=100°+40°+α﹣(20°+α)=120°+α,
∴∠BOE+∠COF﹣∠AOC=120°+α+30°+α﹣α=150°,
當(dāng)40°<∠AOC<90°時(shí),如圖3所示:
∠COF=∠DOF+∠DOC=(360°﹣140°﹣α)+40°=150°﹣α,
∠BOE=∠BOD﹣∠DOE=140°+α﹣(20°+α)=120°+,
∴∠COF+∠AOC﹣∠BOE=150°﹣+α﹣(120°+)=30°;
綜上所述,∠BOE,∠COF,∠AOC之間的數(shù)量關(guān)系為∠BOE+∠COF﹣∠AOC=150°或∠COF+∠AOC﹣∠BOE=30°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某景點(diǎn)的門票價(jià)格如表:
購(gòu)票人數(shù)/人 | 1~50 | 51~100 | 100以上 |
每人門票價(jià)/元 | 12 | 10 | 8 |
某校七年級(jí)(1)、(2)兩班計(jì)劃去游覽該景點(diǎn),其中(1)班人數(shù)少于50人,(2)班人數(shù)多于50人且少于100人,如果兩班都以班為單位單獨(dú)購(gòu)票,則一共支付1118元;如果兩班聯(lián)合起來作為一個(gè)團(tuán)體購(gòu)票,則只需花費(fèi)816元.
(1)兩個(gè)班各有多少名學(xué)生?
(2)團(tuán)體購(gòu)票與單獨(dú)購(gòu)票相比較,兩個(gè)班各節(jié)約了多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)是4,∠DAC的平分線交DC于點(diǎn)E,若點(diǎn)P、Q分別是AD和AE上的動(dòng)點(diǎn),則DQ+PQ的最小值( )
A、2
B、4
C、
D、
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,觀察數(shù)軸,請(qǐng)回答:
(1)點(diǎn)與點(diǎn)的距離為 ,點(diǎn)與點(diǎn)的距離為 ;
點(diǎn)與點(diǎn)的距離為 ,點(diǎn)與點(diǎn)的距離為 ;
(2)發(fā)現(xiàn):在數(shù)軸上,如果點(diǎn)與點(diǎn)分別表示數(shù),則它們之間的距離可表示為 (用表示);
(3)利用發(fā)現(xiàn)的結(jié)論,逆向思維解決下列問題:
①數(shù)軸上表示的點(diǎn)與之間的距離是,則的值是 ;
②,則 ;
③數(shù)軸上是否存在表示的點(diǎn),使點(diǎn)到點(diǎn)、點(diǎn)的距離之和為?若存在,請(qǐng)求出的值;若不存在,說明理由;
④的最小值為 ;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象相交于點(diǎn)A(m,3)、B(﹣6,n),與x軸交于點(diǎn)C.
(1)求一次函數(shù)y=kx+b的關(guān)系式;
(2)結(jié)合圖象,直接寫出滿足kx+b>的x的取值范圍;
(3)若點(diǎn)P在x軸上,且S△ACP=S△BOC,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)戶承包荒山若干畝,種果樹2000棵.今年水果總產(chǎn)量為18000千克,此水果在市場(chǎng)上每千克售元,在果園每千克售元.該農(nóng)戶將水果拉到市場(chǎng)出售平均每天出售1000千克,需8人幫忙,每人每天付工資25元,農(nóng)用車運(yùn)費(fèi)及其他各項(xiàng)稅費(fèi)平均每天100元.
(1)分別用表示兩種方式出售水果的收入.
(2)若元,元,且兩種方式都在相同的時(shí)間內(nèi)售完全部水果,請(qǐng)你通過計(jì)算說明選擇哪種出售方式較好.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小亮兩人玩“石頭、剪刀、布”的游戲,游戲規(guī)則為:石頭勝剪刀,剪刀勝布,布勝石頭,相同則不分勝負(fù).
(1)請(qǐng)用列表法或畫樹狀圖表示出所有可能出現(xiàn)的游戲結(jié)果;
(2)求小明獲勝的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】考試前,同學(xué)們總會(huì)采用各種方式緩解考試壓力,以最佳狀態(tài)迎接考試.某校對(duì)該校九年級(jí)的部分同學(xué)做了一次內(nèi)容為“最適合自己的考前減壓方式”的調(diào)查活動(dòng),學(xué)校將減壓方式分為五類,同學(xué)們可根據(jù)自己的情況必選且只選其中一類.?dāng)?shù)據(jù)收集整理后,繪制了圖1和圖2兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息解答下列問題:
(1)請(qǐng)通過計(jì)算,補(bǔ)全條形統(tǒng)計(jì)圖;
(2)請(qǐng)直接寫出扇形統(tǒng)計(jì)圖中“享受美食”所對(duì)應(yīng)圓心角的度數(shù)為 ;
(3)根據(jù)調(diào)查結(jié)果,可估計(jì)出該校九年級(jí)學(xué)生中減壓方式的眾數(shù)和中位數(shù)分別是 , .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖乙,△ABC和△ADE是有公共頂點(diǎn)的等腰直角三角形,∠BAC=∠DAE=90°,點(diǎn)P為射線BD,CE的交點(diǎn).
(1)如圖甲,將△ADE繞點(diǎn)A 旋轉(zhuǎn),當(dāng)C、D、E在同一條直線上時(shí),連接BD、BE,則下列給出的四個(gè)結(jié)論中,其中正確的是_____.
①BD=CE②BD⊥CE③∠ACE+∠DBC=45°④BE2=2(AD2+AB2)
(2)若AB=4,AD=2,把△ADE繞點(diǎn)A旋轉(zhuǎn),
①當(dāng)∠EAC=90°時(shí),求PB的長(zhǎng);
②求旋轉(zhuǎn)過程中線段PB長(zhǎng)的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com