如圖,在⊙O中,AB是直徑,點D是⊙O上一點,點C是弧AD的中點,弦CE⊥AB于點E,過點D的切線交EC的延長線于點G,連接AD,分別交CE、CB于點P、Q,連接AC.給出下列結(jié)論:①∠BAD=∠ABC;②AD=CB;③點P是△ACQ的外心;④GP=GD.⑤CB∥GD.
其中正確結(jié)論的個數(shù)是(    )

A.1          B.2           C.3         D.4

B

解析試題分析:連接OD,∵GD是切線∴OD⊥GD,又∵OD="OA," ∴∠DAO=∠ADO, ∵CE⊥AB, ∴∠DA0+∠APE=90°,∠ODA+∠ADG=90°,而∠APE=∠GPD, ∴∠GDP=∠GPD, ∴GP="GD.." ∵AB為直徑∴∠ACB=90°,∴∠ACP+∠PCQ=90°,∵∠BAC+∠ABC=90°∴∠BCE=∠CAE又點C為AD弧中點,∴∠CBD=∠CAD, ∴∠ACP=∠PAC,同理∠PCQ=∠PQC, ∴點P為AQ的中點,∴點P是△ACQ的外心,由已知得C,D不是AB弧的三等份的點,所以,①,②,⑤不正確,只有③,④正確。
考點:圓周角性質(zhì),切線定義。
點評:熟知上述性質(zhì)定義,本題問較多,很復雜,需細心審題,從已知入手,還需要做輔助線,本題由一定的難度,屬于中檔題。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC中,AB>AC,E為BC邊的中點,AD為∠BAC的平分線,過E作AD的平行線,交AB于F,交CA的延長線于G.
求證:BF=CG.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC中,AB=AC,D為BC邊上一點,且∠BAD=30°,若AD=DE,∠EDC=33°,則∠DAE的度數(shù)為
72
72
°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC中,AB=AC,D是△ABC內(nèi)一點,且BD=DC.求證:∠ABD=∠ACD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC中,AB=BC,∠ABC=90°,D是BC的中點,且它關于AC的對稱點是D′,BD′=
5
,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC中,AB=AC,D點是BC的中點,DE⊥AB于E點,DF⊥AC于F點,則圖中全等三角形共有
3
3
對.

查看答案和解析>>

同步練習冊答案