閱讀理解:求2+22+23+…+210的值.
解:設(shè)s=2+22+23+…+210 ①,則2s=22+23+24+…+211 ②
②-①得s=211-2,即原式=211-2
請參照以上解法直接寫出3+32+33+…+320的值是
321-3
2
321-3
2
分析:把所求算式乘以3,然后相減并整理即可得解.
解答:解:設(shè)S=3+32+33+…+320①,
則3S=32+33+…+321②,
②-①得,2S=321-3,
所以,S=
321-3
2

故答案為:
321-3
2
點評:本題考查了有理數(shù)的乘方,讀懂題目信息,理解這列數(shù)求和的計算方法是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•無錫一模)(1)閱讀理解
先觀察和計算,并用“>”、“<”、“≥”、“≤”、“=”填空:4+9
2
4×9
,
4+4
=
=
2
4×4
,2+3
2
2×3
.請猜想:當(dāng)a>0,b>0,則a+b
2
ab

如∵(
6
-
5
)2>0
,展開(
6
)2+(
5
)2-2
6×5
>0
,∴6+5>2
6×5

請你給出猜想的一個相仿的說明過程.
(2)知識應(yīng)用
①如圖⊙O中,⊙O的半徑為5,點P為⊙O內(nèi)一個定點,OP=2,過點P作兩條互相垂直的弦,即AC⊥BD,作ON⊥BD,OM⊥AC,垂足為P、N,求OM2+ON2的值.
②在上述基礎(chǔ)上,連接AB、BC、CD、DA,利用①中的結(jié)論,探求四邊形ABCD面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀理解:
對于任意正實數(shù)a,b,∵(
a
-
b
)2≥0
,∴a-2
ab
+b≥0
,∴a+b≥2
ab
,只有當(dāng)a=b時,等號成立.若ab為定值P,則a+b≥2
P
,只有當(dāng)a=b時,a+b有最小值2
P

(1)如圖1,AB為半圓O的直徑,C為半圓上的任意一點,(與點A、B不重合)過點C作CD⊥AB,垂足為D,AD=a,DB=b.根據(jù)圖象驗證,a+b≥2
ab
,并指出等號成立時的條件.

(2)根據(jù)上述內(nèi)容,回答下列問題
①若m>0,只有當(dāng)m=
1
1
時,m+
1
m
有最小值為
2
2

②如圖2所示:A(-3,0),B(0,-4),P為雙曲線y=
12
x
(x>0)
上任意一點,過點P作PC⊥x軸于點C,PD⊥y軸于點D,求四邊形ABCD面積的最小值,并說明此時ABCD的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀理解:
對于任意正實數(shù)a、b,∵(
a
-
b
)2
≥0,∴a-2
ab
+b≥0,
∴a+b≥2
ab
,只有當(dāng)a=b時,等號成立.
結(jié)論:在a+b≥2
ab
(a、b均為正實數(shù))中,若ab為定值p,則a+b≥2
p
,只有當(dāng)a=b時,a+b有最小值2
p

(1)根據(jù)上述內(nèi)容,回答下列問題:
若m>0,只有當(dāng)m=
1
1
時,m+
1
m
有最小值
2
2

(2)探索應(yīng)用:如圖,已知A(-3,0),B(0,-4),P為雙曲線y=
12
x
(x>0)圖象上的任意一點,過點P作PC⊥x軸于點C,PD⊥y軸于點D.求四邊形ABCD面積的最小值.
(3)判斷此時四邊形ABCD的形狀,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀理解:對于任意正實數(shù)a,b,(
a
-
b
2≥0,∴a-2
ab
+b≥0,只有當(dāng)a=b時,等號成立.
結(jié)論:在a+b≥2
ab
(a,b均為正實數(shù))中,若ab為定值p,則a+b≥2
p
,
只有當(dāng)a=b時,a+b有最小值2
p

根據(jù)上述內(nèi)容,回答下列問題:
(1)若m>0,只有當(dāng)m=
1
1
時,m+
1
m
有最小值
2
2
;
(2)探索應(yīng)用:已知A(-3,0),B(0,-4),點P為雙曲線y=
12
x
(x>0)
上的任意一點,過點P作PC⊥x軸于點C,PD⊥y軸于D.求四邊形ABCD面積的最小值,并說明此時四邊形ABCD的形狀.

查看答案和解析>>

同步練習(xí)冊答案