【題目】如圖,在ABCD中,用直尺和圓規(guī)作∠BAD的平分線(xiàn)AG交BC于點(diǎn)E,若BF=6,AB=4,則AE的長(zhǎng)為( 。
A. B. 2 C. 3 D. 4
【答案】B
【解析】試題分析:由基本作圖得到AB=AF,加上AO平分∠BAD,則根據(jù)等腰三角形的性質(zhì)得到AO⊥BF,BO=FO=BF=3,再根據(jù)平行四邊形的性質(zhì)得AF∥BE,得出∠1=∠3,于是得到∠2=∠3,根據(jù)等腰三角形的判定得AB=EB,然后再根據(jù)等腰三角形的性質(zhì)得到AO=OE,最后利用勾股定理計(jì)算出AO,從而得到AE的長(zhǎng).
解:連結(jié)EF,AE與BF交于點(diǎn)O,如圖
∵AB=AF,AO平分∠BAD,
∴AO⊥BF,BO=FO=BF=3,
∵四邊形ABCD為平行四邊形,
∴AF∥BE,
∴∠1=∠3,
∴∠2=∠3,
∴AB=EB,
∵BO⊥AE,
∴AO=OE,
在Rt△AOB中,AO=,
∴AE=2AO=2.
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果關(guān)于x的一元二次方程(a≠0)有兩個(gè)不相等的實(shí)數(shù)根,且其中一個(gè)根為另一個(gè)根的2倍,那么稱(chēng)這樣的方程為“倍根方程”.例如,方程的兩個(gè)根是2和4,則方程就是“倍根方程”.
(1)若一元二次方程是“倍根方程”,則c=
(2)若方程(a≠0)是倍根方程,且相異兩點(diǎn)M(1+t,s),N(4-t,s),都在拋物線(xiàn)上,求一元二次方程(a≠0)的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在△ABC中,P為AB上一點(diǎn),連接CP,以下條件中不能判定△ACP∽△ABC的是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知二次函數(shù)y=ax2+x+c(a≠0)的圖象與y軸交于點(diǎn)A(0,4),與x軸交于點(diǎn)B、C,點(diǎn)C坐標(biāo)為(8,0),連接AB、AC.
(1)請(qǐng)直接寫(xiě)出二次函數(shù)y=ax2+x+c的表達(dá)式;
(2)判斷△ABC的形狀,并說(shuō)明理由;
(3)若點(diǎn)N在x軸上運(yùn)動(dòng),當(dāng)以點(diǎn)A、N、C為頂點(diǎn)的三角形是等腰三角形時(shí),請(qǐng)寫(xiě)出此時(shí)點(diǎn)N的坐標(biāo);
(4)如圖2,若點(diǎn)N在線(xiàn)段BC上運(yùn)動(dòng)(不與點(diǎn)B、C重合),過(guò)點(diǎn)N作NM∥AC,交AB于點(diǎn)M,當(dāng)△AMN面積最大時(shí),求此時(shí)點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠(chǎng)設(shè)計(jì)了一款成本為20元/件的工藝品投放市場(chǎng)進(jìn)行試銷(xiāo),經(jīng)過(guò)調(diào)查,得到如下數(shù)據(jù):
銷(xiāo)售單價(jià)x(元∕件) | … | 30 | 40 | 50 | 60 | … |
每天銷(xiāo)售量y(件) | … | 500 | 400 | 300 | 200 | … |
(1)研究發(fā)現(xiàn),每天銷(xiāo)售量y與單價(jià)x滿(mǎn)足一次函數(shù)關(guān)系,求出y與x的關(guān)系式;
(2)當(dāng)?shù)匚飪r(jià)部門(mén)規(guī)定,該工藝品銷(xiāo)售單價(jià)最高不能超過(guò)45元/件,那么銷(xiāo)售單價(jià)定為多少時(shí),工藝廠(chǎng)試銷(xiāo)該工藝品每天獲得的利潤(rùn)8000元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D,E分別為AB,AC邊上一點(diǎn),且BE=CD,CD⊥BE.若∠A=30°,BD=1,CE=2,則四邊形CEDB的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一直角坐標(biāo)系中,函數(shù)和函數(shù)(m是常數(shù),且)的圖象可能是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】面對(duì)新冠肺炎疫情對(duì)經(jīng)濟(jì)運(yùn)行的沖擊,中國(guó)人民銀行營(yíng)業(yè)管理部(中國(guó)人民銀行總行在京派駐機(jī)構(gòu))與相關(guān)部門(mén)多方動(dòng)員,合力推動(dòng)轄內(nèi)9家全國(guó)性銀行北京分行和3家地方法人銀行為疫情防控重點(diǎn)企業(yè)提供優(yōu)惠利率貸款,有力有序推動(dòng)企業(yè)復(fù)工復(fù)產(chǎn).截至2020年4月2日,已發(fā)放優(yōu)惠利率貸款573筆,金額280 億元.將280 億元用科學(xué)記數(shù)法表示應(yīng)為( )
A.28×元B.2.8×元C.2.8×元D.2.8×元
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一款落地?zé)舻臒糁?/span>垂直于水平地面,高度為1.6米,支架部分的形狀為開(kāi)口向下的拋物線(xiàn),其頂點(diǎn)距燈柱的水平距離為0.8米,距地面的高度為2.4米,燈罩距燈柱的水平距離為1.4米,則燈罩頂端D距地面的高度為______米.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com