精英家教網 > 初中數學 > 題目詳情

如圖,△ABC中,∠ACB=90°,AB=8cm,D是AB的中點.現將△BCD沿BA方向平移1cm,得到△EFG,FG交AC于H,則GH的長等于  ▲  cm.

 

【答案】

3。

【解析】直角三角形斜邊上中線的性質,平移的性質,相似三角形的判定和性質。

【分析】由∠ACB=90°,AB=8,D是AB的中點,根據直角三角形斜邊上的中線等于斜邊的一半的性質,得AD=BD=CD=AB=4。然后由平移的性質得GH∥CD,因此△AGH∽△ADC。 ∴。

       又∵△EFG由△BCD沿BA方向平移1cm得到的, ∴AG=4-1=3。

,解得GH=3。

 

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數學 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數學 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數學 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數;
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關系,請說明理由.

查看答案和解析>>

同步練習冊答案