若函數(shù)y=
kx
中,當(dāng)x=2時(shí),y=-3,則函數(shù)解析式是
 
分析:用待定系數(shù)法確定反比例函數(shù)的比例系數(shù)k,求出函數(shù)解析式.
解答:解:把x=2,y=-3代入y=
k
x
中得,k=-6,
所以函數(shù)解析式是y=-
6
x

故答案為:y=-
6
x
點(diǎn)評(píng):本題主要考查了用待定系數(shù)法確定反比例函數(shù)的比例系數(shù)k,求出函數(shù)解析式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,直線y=-x-5交x軸于A,交y軸于B,點(diǎn)P(0,-1),D是線段AB上一動(dòng)點(diǎn),DC⊥y軸于點(diǎn)C,反比例函數(shù)y=
kx
的圖象經(jīng)過點(diǎn)D.
(1)若C為BP的中點(diǎn),求k的值.
精英家教網(wǎng)
(2)DH⊥DC交OA于H,若D點(diǎn)的橫坐標(biāo)為x,四邊形DHOC的面積為y,求y與x之間的函數(shù)關(guān)系式.
精英家教網(wǎng)
(3)將直線AB沿y軸正方向平移a個(gè)單位(a>5),交x軸、y軸于E、F點(diǎn),G為y軸負(fù)半軸上一點(diǎn),G(0,-a+5),點(diǎn)M、N以相同的速度分別從E、G兩點(diǎn)同時(shí)出發(fā),沿x軸、y軸向點(diǎn)O運(yùn)動(dòng)(不到達(dá)O點(diǎn)),同時(shí)靜止,連接并延長(zhǎng)FM交EN于K,連接OK、MN,當(dāng)M、N兩點(diǎn)在運(yùn)動(dòng)過程中以下兩個(gè)結(jié)論:①∠EFM=∠MNK;②∠FMO=∠OKN,其中只有一個(gè)結(jié)論是正確的,請(qǐng)判斷并證明你的結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,將一矩形OABC放在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn).點(diǎn)A在y軸正半軸上.點(diǎn)E是邊AB上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、B重合),過點(diǎn)E的反比例函數(shù)y=
kx
(x>0)
的圖象與邊BC交于點(diǎn)F.
(1)若△OAE、△OCF的而積分別為S1、S2.且S1+S2=2,求k的值.
(2)若OA=2,OC=4,當(dāng)四邊形AOFE的面積最大時(shí),求點(diǎn)E、F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•西寧)如圖,正方形AOCB在平面直角坐標(biāo)系xoy中,點(diǎn)O為原點(diǎn),點(diǎn)B在反比例函數(shù)y=
k
x
(x>0)圖象上,△BOC的面積為8.
(1)求反比例函數(shù)y=
k
x
的關(guān)系式;
(2)若動(dòng)點(diǎn)E從A開始沿AB向B以每秒1個(gè)單位的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)F從B開始沿BC向C以每秒2個(gè)單位的速度運(yùn)動(dòng),當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)隨之停止運(yùn)動(dòng).若運(yùn)動(dòng)時(shí)間用t表示,△BEF的面積用S表示,求出S關(guān)于t的函數(shù)關(guān)系式,并求出當(dāng)運(yùn)動(dòng)時(shí)間t取何值時(shí),△BEF的面積最大?
(3)當(dāng)運(yùn)動(dòng)時(shí)間為
4
3
秒時(shí),在坐標(biāo)軸上是否存在點(diǎn)P,使△PEF的周長(zhǎng)最小?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法:①當(dāng)m>1時(shí),分式
1
x2-2x+m
總有意義;②若反比例函數(shù)y=
k
x
的圖象經(jīng)過點(diǎn)(
-m
,
33m
),則在每個(gè)分支內(nèi)y隨著x的增大而增大;③關(guān)于x的方程
x
x-3
-2=
m
x-3
有正數(shù)解,則m<6;④在Rt△ABC中,∠ACB=90°,BC=a,AC=b,AB=c,AB邊上的高CD=h,那么以
1
a
、
1
b
、
1
h
長(zhǎng)為邊的三角形是直角三角形.其中正確的結(jié)論的個(gè)數(shù)是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案