如圖,AB、AC分別是⊙O的直徑和弦,D為的中點(diǎn),DE⊥AC平點(diǎn)E,DE=6cm,CE=2cm。
(1)求證:DE是⊙O的切線;
(2)求弦AC的長(zhǎng);
(3)求直徑AB的長(zhǎng)。
解:(1)證明:連接OD、OC,
∵D是中點(diǎn),

∴AE∥OD,
∵DE⊥AE,
∴DE⊥OD,
∴DE是⊙O的切線;
(2)作OF⊥AC于點(diǎn)F,則F為AC中點(diǎn),可得矩形EFOD,
∴OF=DE=6,
∴OC=OD=FE=CF+CE=CF+2,
在Rt△COF中,由勾股定理有OF2+FC2=OC2=(FC+2)2,
∴62+FC2=FC2+4FC+4,
∴FC=8,AC=2FC=16(cm);
(3)由(2)知OF2+FC2=OC2,
,
∴AB=2OC=20(cm)。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、已知:如圖,AB、AC分別切⊙O于B、C,D是⊙O上一點(diǎn),∠D=40°,則∠A的度數(shù)等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、如圖,AB、AC分別為⊙O的直徑和弦,D為劣弧AC上一點(diǎn),DE⊥AB于H交⊙O于E,交AC于點(diǎn)F,P為ED延長(zhǎng)線上的一點(diǎn).
(1)當(dāng)△PCF滿足什么條件時(shí),PC與⊙O相切并說明理由;
(2)當(dāng)D點(diǎn)在劣弦AC的什么位置時(shí),使AD2=DE•DF,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB、AC分別切⊙O于M、N兩點(diǎn),點(diǎn)D在⊙O上,且∠BDC=60°,則∠A=( 。悖

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB、AC分別為⊙O的內(nèi)接正六邊形、內(nèi)接正方形的一邊,BC是圓內(nèi)接n邊形的一邊,則n等于(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1998年全國(guó)中考數(shù)學(xué)試題匯編《四邊形》(01)(解析版) 題型:選擇題

(1998•湖州)已知:如圖,AB、AC分別切⊙O于B、C,D是⊙O上一點(diǎn),∠D=40°,則∠A的度數(shù)等于( )

A.140°
B.120°
C.100°
D.80°

查看答案和解析>>

同步練習(xí)冊(cè)答案