如圖,在平行四邊形ABCD中,對角線AC、BD相交于點O,AF⊥BD,CE⊥BD,垂足分別為E、F;
(1)連接AE、CF,得四邊形AFCE,試判斷四邊形AFCE是下列圖形中的哪一種?
①平行四邊形;②菱形;③矩形;
(2)請證明你的結(jié)論.

【答案】分析:(1)四邊形AFCE為平行四邊形;
(2)可先證明△AOF≌△COE,可得OF=OE,又有OA=OC,根據(jù)對角線互相平分的四邊形是平行四邊形,可得四邊形AFCE是平行四邊形.
解答:(1)解:畫圖連接AE、CF,
四邊形AFCE為平行四邊形.

(2)證明:∵AF⊥BD,CE⊥BD,
∴∠AFO=∠CEO.
又∵∠AOF=∠COE,
∴OA=OC.
∴△AOF≌△COE(AAS),
∴OF=OE.
又∵OA=OC,
∴四邊形AFCE是平行四邊形.
點評:平行四邊形的判定方法共有五種,應(yīng)用時要認真領(lǐng)會它們之間的聯(lián)系與區(qū)別,同時要根據(jù)條件合理、靈活地選擇方法.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

17、如圖,在平行四邊形ABCD中,EF∥AD,GH∥AB,EF、GH相交于點O,則圖中共有
9
個平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點E,∠ADC的平分線交AB于點F,證明:四邊形DFBE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平行四邊形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.點M是邊AD上一點,且DM:AD=1:3.點E、F分別從A、C同時出發(fā),以1厘米/秒的速度分別沿AB、CB向點B運動(當點F運動到點B時,點E隨之停止運動),EM、CD精英家教網(wǎng)的延長線交于點P,F(xiàn)P交AD于點Q.設(shè)運動時間為x秒,線段PC的長為y厘米.
(1)求y與x之間函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當x為何值時,PF⊥AD?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,AB=2
2
,AO=
3
OB=
5
,則下列結(jié)論中不正確的是( 。
A、AC⊥BD
B、四邊形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•同安區(qū)一模)如圖,在平行四邊形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,則AD的長為
4cm
4cm

查看答案和解析>>

同步練習冊答案