【題目】如圖,在△ABC中,CF⊥AB于點F,BE⊥AC于點E,M為BC的中點連接ME、MF、EF.
(1) 求證:△MEF是等腰三角形;
(2) 若∠A=,∠ABC=50°,求∠EMF的度數(shù).
【答案】(1)見解析;(2)∠EMF=40°
【解析】
(1)易得△BCE和△BCF都是直角三角形,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得ME=MF=BC,即可得證;
(2)首先根據(jù)三角形內(nèi)角和定理求出∠ACB=60°,然后由(1)可知MF=MB,ME=MC,利用等邊對等角可求出∠MFB=50°,∠MEC=60°,從而推出∠BMF和∠CME的度數(shù),即可求∠EMF的度數(shù).
(1)∵CF⊥AB于點F,BE⊥AC于點E,
∴△BCE和△BCF為直角三角形
∵M為BC的中點
∴ME=BC,MF=BC
∴ME=MF
即△MEF是等腰三角形
(2)∵∠A=70°,∠ABC=50°,
∴∠ACB=180°-70°-50°=60°
由(1)可知MF=MB,ME=MC,
∴∠MFB=∠ABC=50°,∠MEC=∠ACB=60°,
∴∠BMF=180°-2×50°=80°,∠CME=180°-2×60°=60°
∴∠EMF=180°-∠BMF-∠CME=180°-80°-60°=40°
科目:初中數(shù)學 來源: 題型:
【題目】(本題共10分)水果批發(fā)市場有一種高檔水果,如果每千克盈利(毛利潤)10元,每天可售出500千克.經(jīng)市場調(diào)查發(fā)現(xiàn),在進貨價不變的情況下,若每千克漲價1元,日銷量將減少20千克.
(1)若以每千克能盈利18元的單價出售,問每天的總毛利潤為多少元?
(2)現(xiàn)市場要保證每天總毛利潤6000元,同時又要使顧客得到實惠,則每千克應漲價多少元?
(3)現(xiàn)需按毛利潤的10%交納各種稅費,人工費每日按銷售量每千克支出0.9元,水電房租費每日102元,若剩下的每天總純利潤要達到5100元,則每千克漲價應為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,點D在BC上,DE∥AC,DF∥AB,下列四個判斷中不正確的是( )
A.四邊形AEDF是平行四邊形
B.若∠BAC=90°,則四邊形AEDF是矩形
C.若AD平分∠BAC,則四邊形AEDF是矩形
D.若AD⊥BC且AB=AC,則四邊形AEDF是菱形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請將下列事件發(fā)生的概率標在圖1中(用字母表示):
(1)記為點A:隨意擲兩枚質(zhì)地均勻的骰子,朝上面的點數(shù)之和為1;
(2)記為點B:拋出的籃球會下落;
(3)記為點C:從裝有3個紅球、7個白球的口袋中任取一個球,恰好是白球(這些球除顏色外完全相同);
(4)記為點D:如圖2所示的正方形紙片上做隨機扎針實驗,則針頭恰好扎在陰影區(qū)域內(nèi).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(8分)如圖,AC是ABCD的一條對角線,過AC中點O的直線分別交AD,BC于點E,F(xiàn).
(1)求證:△AOE≌△COF;
(2)當EF與AC滿足什么條件時,四邊形AFCE是菱形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=10,AC=8,BC=6,以邊AB的中點O為圓心,作半圓與AC相切,點P,Q分別是邊BC和半圓上的動點,連接PQ,則PQ長的最小值是_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,已知直線y=-2x+4與x軸、y軸分別交于點A、C,以OA、OC為邊在第一象限內(nèi)作長方形OABC.
(1)求點A、C的坐標;
(2)將△ABC對折,使得點A的與點C重合,折痕交AB于點D,求直線CD的解析式(圖②);
(3)在坐標平面內(nèi),是否存在點P(除點B外),使得△APC與△ABC全等?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,過點B作BE⊥AD于點E,過點E作EF⊥AB于點F,與CD的延長線交于點G,連接BG,且BE=BC,BG=5,∠BGF=45°,EG=3,若點M是線段BF上的一個動點,將△MEF沿ME所在直線翻折得到△MEF′,連接CF′,則CF′長度的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場計劃購進、兩種新型節(jié)能臺燈共盞,這兩種臺燈的進價、售價如表所示:
()若商場預計進貨款為元,則這兩種臺燈各購進多少盞?
()若商場規(guī)定型臺燈的進貨數(shù)量不超過型臺燈數(shù)量的倍,應怎樣進貨才能使商場在銷售完這批臺燈時獲利最多?此時利潤為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com