【題目】如圖所示,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD,CE相交于F.
求證:AF平分∠BAC.
【答案】證明見解析
【解析】試題分析:先根據(jù)AB=AC,可得∠ABC=∠ACB,再由垂直,可得90°的角,在△BCE和△BCD中,利用內(nèi)角和為180°,可分別求∠BCE和∠DBC,利用等量減等量差相等,可得FB=FC,再易證△ABF≌△ACF,從而證出AF平分∠BAC.
試題解析:證明:∵AB=AC(已知),
∴∠ABC=∠ACB(等邊對等角).
∵BD、CE分別是高,
∴BD⊥AC,CE⊥AB(高的定義).
∴∠CEB=∠BDC=90°.
∴∠ECB=90°∠ABC,∠DBC=90°∠ACB.
∴∠ECB=∠DBC(等量代換).
∴FB=FC(等角對等邊),
在△ABF和△ACF中,
,
∴△ABF≌△ACF(SSS),
∴∠BAF=∠CAF(全等三角形對應(yīng)角相等),
∴AF平分∠BAC.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分11分)學(xué)之道在于悟.希望同學(xué)們在問題(1)解決過程中有所悟,再繼續(xù)探索研究問題(2).
(1)如圖①,∠B=∠C,BD=CE,AB=DC.
①求證:△ADE為等腰三角形.
②若∠B=60°,求證:△ADE為等邊三角形.
(2)如圖②,射線AM與BN,AM⊥AB,BN⊥AB,點(diǎn)P是AB上一點(diǎn),在射線AM與BN上分別作點(diǎn)C、點(diǎn)D滿足:△CPD為等腰直角三角形.(要求:利用直尺與圓規(guī),不寫作法,保留作圖痕跡)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一種零件的內(nèi)徑尺寸在圖紙上是50±0.05(單位:mm),表示這種零件的內(nèi)徑標(biāo)準(zhǔn)尺寸是多少?加工要求最大不超過標(biāo)準(zhǔn)尺寸多少毫米?符合要求的零件內(nèi)徑最小是多少毫米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠A=∠C=90°,∠ABC,∠ADC的平分線分別與AD,BC相交于E,F(xiàn)兩點(diǎn),F(xiàn)G⊥BE于點(diǎn)G,∠1與∠2之間有怎樣的數(shù)量關(guān)系?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AOB=30°,點(diǎn)P在∠AOB的內(nèi)部,P1與P關(guān)于OA對稱,P2與P關(guān)于OB對稱,則△P1OP2是
A. 含30°角的直角三角形 B. 頂角是30的等腰三角形
C. 等邊三角形 D. 等腰直角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+ax﹣1=0的根的情況是( )
A.沒有實(shí)數(shù)根
B.只有一個實(shí)數(shù)根
C.有兩個相等的實(shí)數(shù)根
D.有兩個不相等的實(shí)數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在以點(diǎn)O為原點(diǎn)的直角坐標(biāo)系中,一次函數(shù)y=﹣x+1的圖象與x軸交于A,與y軸交于點(diǎn)B,求:
(1)△AOB面積= ;
(2)△AOB內(nèi)切圓半徑= ;
(3)點(diǎn)C在第二象限內(nèi)且為直線AB上一點(diǎn),OC=AB,反比例函數(shù)的圖象經(jīng)過點(diǎn)C,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖,在△ABC中,AB=AC,D為BC上一點(diǎn),∠B=30°,連接AD.
(1)若∠BAD=45°,求證:△ACD為等腰三角形;
(2)若△ACD為直角三角形,求∠BAD的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com