【題目】如圖,ABO的直徑,弦CDAB于點(diǎn)E,OFAC于點(diǎn)F,

(1)請?zhí)剿?/span>OFBC的關(guān)系并說明理由;

(2)若∠D30°,BC1時,求圓中陰影部分的面積.(結(jié)果保留π)

【答案】(1)OFBC,OFBC,理由見解析;(2)

【解析】

(1)先根據(jù)垂徑定理得出AF=CF,再根據(jù)AO=BO得出OF是△ABC的中位線,由三角形的中位線定理即可得出結(jié)論;
(2)連接OC,由(1)知,再根據(jù)直角三角形的性質(zhì)得出AB及AC的長,根據(jù)扇形的面積公式求出扇形AOC的度數(shù),根據(jù)陰影面積=扇形AOC的面積-△AOC的面積,即可得出結(jié)論.

(1)OFBC,OFBC

理由:由垂徑定理得AFCF

AOBO

OF是△ABC的中位線.

OFBC,OFBC

(2)連接OC.由(1)OF

ABO的直徑,

∴∠ACB90°.

∵∠D30°,

∴∠A30°.

AB2BC2

AC

SAOC×AC×OF

∵∠AOC120°,OA1,

S扇形AOC

S陰影S扇形AOCSAOC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)今,越來越多的青少年在觀看影片《流浪地球》后,更加喜歡同名科幻小說,該小說銷量也急劇上升.書店為滿足廣大顧客需求,訂購該科幻小說若干本,每本進(jìn)價為20元.根據(jù)以往經(jīng)驗(yàn):當(dāng)銷售單價是25元時,每天的銷售量是250本;銷售單價每上漲1元,每天的銷售量就減少10本,書店要求每本書的利潤不低于10元且不高于18元.

1)直接寫出書店銷售該科幻小說時每天的銷售量(本)與銷售單價(元)之間的函數(shù)關(guān)系式及自變量的取值范圍.

2)書店決定每銷售1本該科幻小說,就捐贈元給困難職工,每天扣除捐贈后可獲得最大利潤為1960元,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以AB為直徑的⊙O交∠BAD的角平分線于C,過CCDADD,交AB的延長線于E

(1)求證:直線CD⊙O的切線;

(2)當(dāng)AB2BE,且CE時,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點(diǎn)C,以點(diǎn)O為圓心,OC長為半徑作,交射線OB于點(diǎn)D,連接CD

2)分別以點(diǎn)C,D為圓心,CD長為半徑作弧,交于點(diǎn)MN;

3)連接OM,MN

根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯誤的是(

A. ∠COM=∠CODB. OM=MN,則∠AOB=20°

C. MN∥CDD. MN=3CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,對于點(diǎn)P(x,y)Q(xy),給出如下定義:若y′=,則稱點(diǎn)Q為點(diǎn)P的“親密點(diǎn)”.例如:點(diǎn)(1,2)的“親密點(diǎn)”為點(diǎn)(1,3),點(diǎn)(1,3)的“親密點(diǎn)”為點(diǎn)(1,﹣3).若點(diǎn)P在函數(shù)yx22x3的圖象上,則其“親密點(diǎn)”Q的縱坐標(biāo)y′關(guān)于x的函數(shù)圖象大致正確的是(  )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售一批襯衫,平均每天可售出20件,每件盈利40元,經(jīng)過調(diào)查發(fā)現(xiàn),銷售單價每降低5元,每天可多售出10件,下列說法錯誤的是(

A.銷售單價降低15元時,每天獲得利潤最大

B.每天的最大利潤為1250

C.若銷售單價降低10元,每天的利潤為1200

D.若每天的利潤為1050元,則銷售單價一定降低了5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB = 90°BC = 6,AC = 8.點(diǎn)DAB邊上一點(diǎn),過點(diǎn)DDE // BC,交邊ACE.過點(diǎn)CCF // AB,交DE的延長線于點(diǎn)F

1)如果,求線段EF的長;

2)求∠CFE的正弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,需在一面墻上繪制幾個相同的拋物線型圖案.按照圖中的直角坐標(biāo)系,最左邊的拋物線可以用y=ax2+bx(a≠0)表示.已知拋物線上B,C兩點(diǎn)到地面的距離均為m,到墻邊OA的距離分別為m,m.

(1)求該拋物線的函數(shù)關(guān)系式,并求圖案最高點(diǎn)到地面的距離;

(2)若該墻的長度為10 m,則最多可以連續(xù)繪制幾個這樣的拋物線型圖案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,,、、分別是、、的中點(diǎn),則( 。

A.18B.24C.30D.36

查看答案和解析>>

同步練習(xí)冊答案