【題目】已知,拋物線(a0)經(jīng)過點(diǎn)A(4,4)

(1)求拋物線的解析式;

(2)如圖1,拋物線上存在點(diǎn)B,使得AOB是以AO為直角邊的直角三角形,請(qǐng)直接寫出所有符合條件的點(diǎn)B的坐標(biāo):

(3)如圖2,直線l經(jīng)過點(diǎn)C(0,﹣1),且平行與x軸,若點(diǎn)D為拋物線上任意一點(diǎn)(原點(diǎn)O除外),直線DO交l于點(diǎn)E,過點(diǎn)E作EFl,交拋物線于點(diǎn)F,求證:直線DF一定經(jīng)過點(diǎn)G(0,1).

【答案】(1);(2)B(﹣4,4)或(﹣8,16);(3)證明見解析

【解析】

試題分析:(1)利用待定系數(shù)法求出拋物線解析式,(2)分兩種情況,先確定出直線OB或AB,和拋物線解析式聯(lián)立確定出點(diǎn)B的解析式;

(3)先設(shè)出點(diǎn)D坐標(biāo),確定出點(diǎn)F坐標(biāo),進(jìn)而得出直線DF解析式,將點(diǎn)G坐標(biāo)代入直線DF看是否滿足解析式.

試題解析:(1)拋物線(a0)經(jīng)過點(diǎn)A(4,4),16a=4,a=拋物線的解析式為,(2)存在點(diǎn)B,使得AOB是以AO為直角邊的直角三角形,理由:如圖1,使得AOB是以AO為直角邊的直角三角形,直角頂點(diǎn)是點(diǎn)O,或點(diǎn)A,①當(dāng)直角頂點(diǎn)是點(diǎn)O時(shí),過點(diǎn)O作OBOA,交拋物線于點(diǎn)B,點(diǎn)A(4,4),直線OA解析式為y=x,直線OB解析式為y=﹣x,,(舍)或,B(﹣4,4),②當(dāng)直角頂點(diǎn)為點(diǎn)A,過點(diǎn)A作ABOA,由①有,直線OA的解析式為y=x,A(4,4),直線AB解析式為y=﹣x+8,解得:(舍)或,B(﹣8,16),滿足條件的點(diǎn)B(﹣4,4)或(﹣8,16);故答案為:B(﹣4,4)或(﹣8,16);

(3)證明:設(shè)點(diǎn)D(m,),直線DO解析式為,lx軸,C(0,﹣1),令y=﹣1,則x=,直線DO與l交于E(,﹣1),EFl,lx軸,F橫坐標(biāo)為,點(diǎn)F在拋物線上,F(,設(shè)直線DF解析式為y=kx+b,,,直線DF解析式為,點(diǎn)G(0,1)滿足直線DF解析式,直線DF一定經(jīng)過點(diǎn)G.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a是一位數(shù),b是兩位數(shù),把b放在a的左邊,所得的三位數(shù)可以表示為( 。

A. 10a+b B. 10b+a C. 100a+b D. ab

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若|x|=1,|y|=4,且xy<0,則x﹣y的值等于(
A.﹣3或5
B.3或﹣5
C.﹣3或3
D.﹣5或5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】萬州區(qū)教委為了貫徹國家對(duì)中小學(xué)的教育政策,要求全區(qū)各中小學(xué)教師做到提質(zhì)減負(fù),現(xiàn)要調(diào)查你校學(xué)生學(xué)業(yè)負(fù)擔(dān)是否過重,選用下列哪種方法最恰當(dāng)(

A.查閱文獻(xiàn)資料B.對(duì)學(xué)生問卷調(diào)查

C.上網(wǎng)查詢D.對(duì)校領(lǐng)導(dǎo)問卷調(diào)查

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】夏新同學(xué)上午賣廢品收入13元,記為+13元,下午買舊書支出9元,記為( 。┰

A. +4 B. ﹣9 C. ﹣4 D. +9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各數(shù)中,最大的數(shù)是(
A.|﹣3|
B.﹣2
C.0
D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個(gè)n邊形的內(nèi)角和是其外角和的5倍,則n=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】大樹的價(jià)值很多,可以吸收有毒氣體,防止大氣污染,增加土壤肥力,涵養(yǎng)水源,為鳥類及其他動(dòng)物提供繁衍場所等價(jià)值,累計(jì)計(jì)算,一棵50年樹齡的大樹總計(jì)創(chuàng)造價(jià)值超過160萬元,其中160萬元用科學(xué)記數(shù)法表示為(
A.1.6×105
B.1.6×106
C.1.6×107
D.1.6×108

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若三角形三個(gè)內(nèi)角的比為121,則這個(gè)三角形是__________

查看答案和解析>>

同步練習(xí)冊(cè)答案