【題目】如圖①,P為△ABC內(nèi)一點(diǎn),連接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一個(gè)三角形與△ABC相似,那么就稱P為△ABC的自相似點(diǎn).
(1)如圖②,已知Rt△ABC中,∠ACB=90°,∠ABC>∠A,CD是AB上的中線,過點(diǎn)B作BE丄CD,垂足為E.試說明E是△ABC的自相似點(diǎn);
(2)在△ABC中,∠A<∠B<∠C. ①如圖③,利用尺規(guī)作出△ABC的自相似點(diǎn)P(寫出作法并保留作圖痕跡);
②若△ABC的內(nèi)心P是該三角形的自相似點(diǎn),求該三角形三個(gè)內(nèi)角的度數(shù).
【答案】
(1)解:在Rt△ABC中,∠ACB=90°,CD是AB上的中線,
∴CD= AB,
∴CD=BD,
∴∠BCE=∠ABC,
∵BE⊥CD,∴∠BEC=90°,
∴∠BEC=∠ACB,
∴△BCE∽△ABC,
∴E是△ABC的自相似點(diǎn)
(2)解:①如圖所示,
作法:①在∠ABC內(nèi),作∠CBD=∠A,
②在∠ACB內(nèi),作∠BCE=∠ABC,BD交CE于點(diǎn)P,
則P為△ABC的自相似點(diǎn);
②∵P是△ABC的內(nèi)心,∴∠PBC= ∠ABC,∠PCB= ∠ACB,
∵△ABC的內(nèi)心P是該三角形的自相似點(diǎn),
∴∠PBC=∠A,∠BCP=∠ABC=2∠PBC=2∠A,∠ACB=2∠BCP=4∠A,
∴∠A+2∠A+4∠A=180°,
∴∠A= ,
∴該三角形三個(gè)內(nèi)角度數(shù)為: , , .
【解析】(1)根據(jù)已知條件得出∠BEC=∠ACB,以及∠BCE=∠ABC,得出△BCE∽△ABC,即可得出結(jié)論;(2)①根據(jù)作一角等于已知角即可得出△ABC的自相似點(diǎn);②根據(jù)∠PBC=∠A,∠BCP=∠ABC=∠2∠PBC=2∠A,∠ACB=2∠BCP=4∠A,即可得出各內(nèi)角的度數(shù).
【考點(diǎn)精析】本題主要考查了直角三角形斜邊上的中線和三角形的內(nèi)切圓與內(nèi)心的相關(guān)知識(shí)點(diǎn),需要掌握直角三角形斜邊上的中線等于斜邊的一半;三角形的內(nèi)切圓的圓心是三角形的三條內(nèi)角平分線的交點(diǎn),它叫做三角形的內(nèi)心才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)中,已知點(diǎn)O(0,0),A(0,2),B(1,0),點(diǎn)P是反比例函數(shù)y=﹣ 圖象上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PQ⊥x軸,垂足為Q.若以點(diǎn)O、P、Q為頂點(diǎn)的三角形與△OAB相似,則相應(yīng)的點(diǎn)P共有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算下列各式.
(1)(﹣2)3﹣|2﹣5|﹣(﹣15)
(2)﹣4﹣(+)+(﹣5)﹣(﹣)
(3)(﹣+﹣+)÷(﹣)
(4)18+32÷(﹣2)3﹣(﹣4)2×5
(5)﹣32﹣[(1)3×(﹣)﹣6÷|﹣|]
(6)2×(﹣1)﹣2×13+(﹣1)×5+×(﹣13)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】光明中學(xué)十分重視中學(xué)生的用眼衛(wèi)生,并定期進(jìn)行視力檢測(cè).某次檢測(cè)設(shè)有A、B兩處檢測(cè)點(diǎn),甲、乙、丙三名學(xué)生各自隨機(jī)選擇其中的一處檢測(cè)視力.
(1)求甲、乙、丙三名學(xué)生在同一處檢測(cè)視力的概率;
(2)求甲、乙、丙三名學(xué)生中至少有兩人在B處檢測(cè)視力的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AM切⊙O于點(diǎn)A,BD⊥AM于點(diǎn)D,BD交⊙O于點(diǎn)C,OC平分∠AOB.求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將ABCD的邊DC延長(zhǎng)到點(diǎn)E,使CE=DC,連接AE,交BC于點(diǎn)F.
(1)求證:△ABF≌△ECF;
(2)若∠AFC=2∠D,連接AC、BE,求證:四邊形ABEC是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校初三(1)班 名學(xué)生需要參加體育“五選一”自選項(xiàng)目測(cè)試,班上學(xué)生所報(bào)自選項(xiàng)目的情況統(tǒng)計(jì)表如下:
自選項(xiàng)目 | 人數(shù) | 頻率 |
立定跳遠(yuǎn) | 9 | 0.18 |
三級(jí)蛙跳 | 12 | |
一分鐘跳繩 | 8 | 0.16 |
投擲實(shí)心球 | 0.32 | |
推鉛球 | 5 | 0.1 |
合計(jì) | 50 | 1 |
(1)求 的值;
(2)若將各自選項(xiàng)目的人數(shù)所占比例繪制成扇形統(tǒng)計(jì)圖,求“一分鐘跳繩”對(duì)應(yīng)扇形的圓心角的度數(shù);
(3)在選報(bào)“推鉛球”的學(xué)生中,有3名男生,2名女生.為了了解學(xué)生的訓(xùn)練效果,從這5名學(xué)生中隨機(jī)抽取兩名學(xué)生進(jìn)行推鉛球測(cè)試,求所抽取的兩名學(xué)生中至多有一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李師傅加工1個(gè)甲種零件和1個(gè)乙種零件的時(shí)間分別是固定的,現(xiàn)知道李師傅加工3個(gè)甲種零件和5個(gè)乙種零件共需55分鐘;加工4個(gè)甲種零件和9個(gè)乙種零件共需85分鐘,則李師傅加工2個(gè)甲種零件和4個(gè)乙種零件共需分鐘.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系xOy中,已知A(﹣1,0)、B(3,0)、C(0,﹣1)三點(diǎn),D(1,m)是一個(gè)動(dòng)點(diǎn),當(dāng)△ACD的周長(zhǎng)最小時(shí),△ABD的面積為( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com