若點(diǎn)是第二象限內(nèi)的一個(gè)整數(shù)點(diǎn),則m=________.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=
14
ax2+ax+t
與x軸的一個(gè)交點(diǎn)為A(-1,0)
(1)求拋物線與x軸的另一個(gè)交點(diǎn)B的坐標(biāo);
(2)D是拋物線與y軸的交點(diǎn),C是拋物線上的一點(diǎn),且以AB為一底的梯形ABCD的面積為9,求此拋物線的解析式;
(3)E是第二象限內(nèi)到x軸,y軸的距離的比為5:2的點(diǎn),如果點(diǎn)E在(2)中的拋物線上,且它與點(diǎn)A在此拋物線對(duì)稱軸的同側(cè),問:在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△APE的周長(zhǎng)最。咳舸嬖,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:拋物線y=ax2+4ax+3與x軸的交點(diǎn)為A、B,其中點(diǎn)A在點(diǎn)B的右側(cè).點(diǎn)D是拋物線與y軸的交點(diǎn),點(diǎn)C是拋物線上的一點(diǎn),且四邊形ABCD以AB為一底的梯形,若此梯形ABCD的面積為9.
(1)求點(diǎn)D、A、B的坐標(biāo);并求此拋物線的解析式.
(2)點(diǎn)E是第二象限內(nèi)到x軸、y軸的距離的比為5:2的點(diǎn),如果點(diǎn)E在 (1)中的拋物線上,且它與點(diǎn)A在此拋物線對(duì)稱軸的同側(cè),問:在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△APE的周長(zhǎng)最?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•德州)如圖,在直角坐標(biāo)系中有一直角三角形AOB,O為坐標(biāo)原點(diǎn),OA=1,tan∠BAO=3,將此三角形繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△DOC,拋物線y=ax2+bx+c經(jīng)過點(diǎn)A、B、C.
(1)求拋物線的解析式;
(2)若點(diǎn)P是第二象限內(nèi)拋物線上的動(dòng)點(diǎn),其橫坐標(biāo)為t,
①設(shè)拋物線對(duì)稱軸l與x軸交于一點(diǎn)E,連接PE,交CD于F,求出當(dāng)△CEF與△COD相似時(shí),點(diǎn)P的坐標(biāo);
②是否存在一點(diǎn)P,使△PCD得面積最大?若存在,求出△PCD的面積的最大值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:拋物線y=ax2+4ax+t與x軸的一個(gè)交點(diǎn)為A(-1,0)
(1)求拋物線與x軸的另一個(gè)交點(diǎn)B的坐標(biāo);
(2)D是拋物線與y軸的交點(diǎn),C是拋物線上的一點(diǎn),且以AB為一底的梯形ABCD的面積為9,求此拋物線的解析式;
(3)E是第二象限內(nèi)到x軸、y軸的距離的比為5:2的點(diǎn),如果點(diǎn)E在(2)中的拋物線上,且它與點(diǎn)A在此拋物線對(duì)稱軸的同側(cè),問:在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△APE的周長(zhǎng)最。咳舸嬖,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年北京市房山區(qū)九年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,P是反比例函數(shù)圖象上第二象限內(nèi)的一 點(diǎn),若矩形PEOF的面積為3,則反比例函數(shù)的解析式是

A.        B.       C.             D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案