【題目】如圖,在△ABC中,AB=5,AC=9,SABC= ,動點P從A點出發(fā),沿射線AB方向以每秒5個單位的速度運動,動點Q從C點出發(fā),以相同的速度在線段AC上由C向A運動,當(dāng)Q點運動到A點時,P、Q兩點同時停止運動,以PQ為邊作正方形PQEF(P、Q、E、F按逆時針排序),以CQ為邊在AC上方作正方形QCGH.

(1)求tanA的值;
(2)設(shè)點P運動時間為t,正方形PQEF的面積為S,請?zhí)骄縎是否存在最小值?若存在,求出這個最小值,若不存在,請說明理由;
(3)當(dāng)t為何值時,正方形PQEF的某個頂點(Q點除外)落在正方形QCGH的邊上,請直接寫出t的值.

【答案】
(1)

解:如圖1,過點B作BM⊥AC于點M,

∵AC=9,SABC= ,

ACBM= ,即 ×9BM= ,

解得BM=3.

由勾股定理,得

AM= = =4,

則tanA= =


(2)

解:存在.

如圖2,

過點P作PN⊥AC于點N.

依題意得AP=CQ=5t.

∵tanA= ,

∴AN=4t,PN=3t.

∴QN=AC﹣AN﹣CQ=9﹣9t.

根據(jù)勾股定理得到:PN2+NQ2=PQ2,

S正方形PQEF=PQ2=(3t)2+(9﹣9t)2=90t2﹣162t+81(0<t< ).

∵﹣ = = 在t的取值范圍之內(nèi),

∴S最小值= = =


(3)

解:

①如圖3,當(dāng)點E在邊HG上時,t1= ;

②如圖4,當(dāng)點F在邊HG上時,t2= ;

③如圖5,當(dāng)點P邊QH(或點E在QC上)時,t3=1

④如圖6,當(dāng)點F邊CG上時,t4=


【解析】(1)如圖1,過點B作BM⊥AC于點M,利用面積法求得BM的長度,利用勾股定理得到AM的長度,最后由銳角三角函數(shù)的定義進(jìn)行解答;(2)如圖2,過點P作PN⊥AC于點N.利用(1)中的結(jié)論和勾股定理得到PN2+NQ2=PQ2 , 所以由正方形的面積公式得到S關(guān)于t的二次函數(shù),利用二次函數(shù)的頂點坐標(biāo)公式和二次函數(shù)圖象的性質(zhì)來求其最值;(3)需要分類討論:當(dāng)點E在邊HG上、點F在邊HG上、點P邊QH(或點E在QC上)、點F邊C上時相對應(yīng)的t的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD=CD=8,AB=CB=6,點E,F(xiàn),G,H分別是DA,AB,BC,CD的中點.

(1)求證:四邊形EFGH是矩形;
(2)若DA⊥AB,求四邊形EFGH的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】網(wǎng)絡(luò)購物發(fā)展十分迅速,某企業(yè)有4000名職工,從中隨機(jī)抽取350人,按年齡分布和對網(wǎng)上購物所持態(tài)度情況進(jìn)行了調(diào)查,并將調(diào)查結(jié)果繪成了條形圖1和扇形圖2.

(1)這次調(diào)查中,如果職工年齡的中位數(shù)是整數(shù),那么這個中位數(shù)所在的年齡段是哪一段?
(2)如果把對網(wǎng)絡(luò)購物所持態(tài)度中的“經(jīng)常(購物)”和“偶爾(購物)”統(tǒng)稱為“參與購物”,那么這次接受調(diào)查的職工中“參與網(wǎng)購”的人數(shù)是多少?
(3)這次調(diào)查中,“25﹣35”歲年齡段的職工“從不(網(wǎng)購)”的有22人,它占“25﹣35”歲年齡段接受調(diào)查人數(shù)的百分之幾?
(4)請估計該企業(yè)“從不(網(wǎng)購)”的人數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖1中的摩天輪可抽象成一個圓,圓上一點離地面的高度y(m)與旋轉(zhuǎn)時間x(min)之間的關(guān)系如圖2所示.
(1)根據(jù)圖2填表:

x(min)

0

3

6

8

12

y(m)


(2)變量y是x的函數(shù)嗎?為什么?
(3)根據(jù)圖中的信息,請寫出摩天輪的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=﹣ x+3分別交x軸、y軸于點A、B,P是拋物線y=﹣ x2+2x+5的一個動點,其橫坐標(biāo)為a,過點P且平行于y軸的直線交直線y=﹣ x+3于點Q,則當(dāng)PQ=BQ時,a的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣ x2+mx+n與x軸交于A (﹣2,0)、B兩點,與y軸交于點C.拋物線對稱軸為直線x=3,且對稱軸與x軸交于點D.

(1)求拋物線的解析式;
(2)點P在線段BC上從點C開始向點B運動(點P不與點B、C重合),速度為每秒 個單位,設(shè)運動時間為t(單位:s),過點P作x軸的垂線與拋物線相交于點F.求四邊形CDBF的面積S關(guān)于t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△AOB∽△DOC,∠AOB=∠COD=90°,M為OA的中點,OA=6,OB=8,將△COD繞O點旋轉(zhuǎn),連接AD,CB交于P點,連接MP,則MP的最大值( )

A.7
B.8
C.9
D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市民營經(jīng)濟(jì)持續(xù)發(fā)展,2015年城鎮(zhèn)民營企業(yè)就業(yè)人數(shù)突破20萬.為了解城鎮(zhèn)民營企業(yè)員工每月的收入狀況,統(tǒng)計局對全市城鎮(zhèn)民營企業(yè)員工2015年月平均收入隨機(jī)抽樣調(diào)查,將抽樣的數(shù)據(jù)按“2000元以內(nèi)”、“2000元~4000元”、“4000元~6000元”和“6000元以上”分為四組,進(jìn)行整理,分別用A,B,C,D表示,得到下列兩幅不完整的統(tǒng)計圖.

由圖中所給出的信息解答下列問題:
(1)本次抽樣調(diào)查的員工有人,在扇形統(tǒng)計圖中x的值為 , 表示“月平均收入在2000元以內(nèi)”的部分所對應(yīng)扇形的圓心角的度數(shù)是;
(2)將不完整的條形圖補充完整,并估計我市2015年城鎮(zhèn)民營企業(yè)20萬員工中,每月的收入在“2000元~4000元”的約多少人?
(3)統(tǒng)計局根據(jù)抽樣數(shù)據(jù)計算得到,2016年我市城鎮(zhèn)民營企業(yè)員工月平均收入為4872元,請你結(jié)合上述統(tǒng)計的數(shù)據(jù),談一談用平均數(shù)反映月收入情況是否合理?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC和△BCD中,AB=DC,AC=DB,AC、DB交于點M.
(1)求證:△ABC≌△DCB;
(2)作CN∥BD,BN∥AC,CN交BN于點N,求證:四邊形BNCM是菱形.

查看答案和解析>>

同步練習(xí)冊答案