如圖所示,直線(xiàn)y=x+b交x軸A點(diǎn),交y軸于B點(diǎn),交雙曲線(xiàn)數(shù)學(xué)公式于P點(diǎn),連OP,則OP2-OA2=________.

16
分析:由直線(xiàn)y=x+b與雙曲線(xiàn)交于點(diǎn)P可知:x-y=-b,xy=8,又OP2=x2+y2,OA2=b2,由此即可求出OP2-OA2的值.
解答:∵直線(xiàn)y=x+b與雙曲線(xiàn)交于點(diǎn)P,設(shè)P點(diǎn)的坐標(biāo)(x,y),
∴x-y=-b,xy=8,
而直線(xiàn)y=x+b與x軸交于A(yíng)點(diǎn),
∴OA=b.
又∵OP2=x2+y2,OA2=b2,
∴OP2-OA2=x2+y2-b2=(x-y)2+2xy-b2=16.
故答案為:16.
點(diǎn)評(píng):此題主要考查一次函數(shù)與反比例函數(shù)的圖象及其性質(zhì),同時(shí)也考查了圖象交點(diǎn)坐標(biāo)與解析式的關(guān)系,難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

3、如圖所示,直線(xiàn)AB,CD相交于O,所形成的∠1,∠2,∠3,∠4中,下列分類(lèi)不同于其它三個(gè)的(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示:直線(xiàn)MN⊥RS于點(diǎn)O,點(diǎn)B在射線(xiàn)OS上,OB=2,點(diǎn)C在射線(xiàn)ON上,OC=2,點(diǎn)E是射線(xiàn)OM上一動(dòng)點(diǎn),連接EB,過(guò)O作OP⊥EB于P,連接CP,過(guò)P作PF⊥PC交射線(xiàn)OS于F.

(1)求證:△POC∽△PBF.
(2)當(dāng)OE=1,OE=2時(shí),BF的長(zhǎng)分別為多少?當(dāng)OE=n時(shí),BF=
4
n
4
n

(3)當(dāng)OE=1時(shí),S△EBF=S1;OE=2時(shí),S△EBF=S2;…,OE=n時(shí),S△EBF=Sn.則S1+S2+…+Sn=
2n
2n
.(直接寫(xiě)出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,直線(xiàn)a、b被直線(xiàn)c所截,現(xiàn)給出下列四種條件:①∠2=∠6;②∠2=∠8;③∠1+∠4=180°;④∠3=∠8,其中能判斷是a∥b的條件的序號(hào)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖所示,直線(xiàn)AB∥CD,CO⊥OD于O點(diǎn),并且∠1=40度.則∠D的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

將一張矩形紙板沿對(duì)角線(xiàn)剪開(kāi)得到兩個(gè)三角形,△ABC與△DEF,∠B=∠E=90°,如圖①所示.
(1)將△ABC與△DEF按如圖②方式擺放,使點(diǎn)B與E重合,點(diǎn)C、B、E、F在同一條直線(xiàn)上,邊AB與DE重合,連接CD、FA,并延長(zhǎng)FA交CD于G.試證:FA⊥CD
(2)在(1)所述基礎(chǔ)上,將紙板△ACB沿直線(xiàn)CF向右平移,并剪去ED右側(cè)部分,此時(shí)CA與ED的交點(diǎn)為A1,連接CD、FA1,并延長(zhǎng)FA1交CD于G,如圖③所示,直線(xiàn)FA1和CD的位置關(guān)系是
 
(直接寫(xiě)出)
(3)在(2)所述基礎(chǔ)上,將紙板△A1CE繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)α度(0°<α<90°)至如圖④所示位置,連接CD、FA1,CD與FA1交于點(diǎn)G,試判斷FA1與CD的位置關(guān)系?并說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案