【題目】如圖,點(diǎn)E正方形ABCD外一點(diǎn),點(diǎn)F是線段AE上一點(diǎn),△EBF是等腰直角三角形,其中∠EBF=90°,連接CE、CF.
(1)求證:△ABF≌△CBE;
(2)判斷△CEF的形狀,并說明理由.
【答案】
(1)證明:∵四邊形ABCD是正方形,
∴AB=CB,∠ABC=90°,
∵△EBF是等腰直角三角形,其中∠EBF=90°,
∴BE=BF,
∴∠ABC﹣∠CBF=∠EBF﹣∠CBF,
∴∠ABF=∠CBE.
在△ABF和△CBE中,有 ,
∴△ABF≌△CBE(SAS).
(2)解:△CEF是直角三角形.理由如下:
∵△EBF是等腰直角三角形,
∴∠BFE=∠FEB=45°,
∴∠AFB=180°﹣∠BFE=135°,
又∵△ABF≌△CBE,
∴∠CEB=∠AFB=135°,
∴∠CEF=∠CEB﹣∠FEB=135°﹣45°=90°,
∴△CEF是直角三角形.
【解析】(1)由四邊形ABCD是正方形可得出AB=CB,∠ABC=90°,再由△EBF是等腰直角三角形可得出BE=BF,通過角的計(jì)算可得出∠ABF=∠CBE,利用全等三角形的判定定理SAS即可證出△ABF≌△CBE;(2)根據(jù)△EBF是等腰直角三角形可得出∠BFE=∠FEB,通過角的計(jì)算可得出∠AFB=135°,再根據(jù)全等三角形的性質(zhì)可得出∠CEB=∠AFB=135°,通過角的計(jì)算即可得出∠CEF=90°,從而得出△CEF是直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐際系xOy中,當(dāng)m,n滿足mn=k(k為常數(shù),且m>0,n>0)時(shí),就稱點(diǎn)(m,n)為“等積點(diǎn)”.
(1)若k=4,求函數(shù)y=x﹣4的圖象上滿足條件的,“等積點(diǎn)”坐標(biāo);
(2)若直線y=﹣x+b(b>0)與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,并且直線有且只有一個(gè)“等積點(diǎn)”,過點(diǎn)A與y軸平行的直線和過點(diǎn)B與x軸平行的直線交于點(diǎn)C,點(diǎn)E是直線AC上的“等積點(diǎn)”,點(diǎn)F是直線BC上的“等積點(diǎn)”,若△OEF的面積為k2+ k﹣ ,求EF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD和矩形EFGO在平面直角坐標(biāo)系中,點(diǎn)B,F(xiàn)的坐標(biāo)分別為(﹣4,4),(2,1).若矩形ABCD和矩形EFGO是位似圖形,點(diǎn)P(點(diǎn)P在GC上)是位似中心,則點(diǎn)P的坐標(biāo)為( )
A.(0,3)
B.(0,2.5)
C.(0,2)
D.(0,1.5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,點(diǎn)D在BC邊上,有下列三個(gè)關(guān)系式:
① BAC=90°,② = ,③AD⊥BC.
選擇其中兩個(gè)式子作為已知,余下的一個(gè)作為結(jié)論,寫出已知,求證,并證明.
已知:
求證:
證明:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形OBCD的邊OB在x軸上,反比例函數(shù)y= (x>0)的圖象經(jīng)過菱形對(duì)角線的交點(diǎn)A,且與邊BC交于點(diǎn)F,點(diǎn)A的坐標(biāo)為(4,2).則點(diǎn)F的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)m,n是實(shí)數(shù)且滿足m﹣n=mn時(shí),就稱點(diǎn)Q(m, )為“奇異點(diǎn)”,已知點(diǎn)A、點(diǎn)B是“奇異點(diǎn)”且都在反比例函數(shù)y= 的圖象上,點(diǎn)O是平面直角坐標(biāo)系原點(diǎn),則△OAB的面積為( )
A.1
B.
C.2
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個(gè)四邊形的一條對(duì)角線把四邊形分成兩個(gè)等腰三角形,且其中一個(gè)等腰三角形的底角是另一個(gè)等腰三角形底角的2倍,我們把這條對(duì)角線叫做這個(gè)四邊形的黃金線,這個(gè)四邊形叫做黃金四邊形.
(1)如圖1,在四邊形ABCD中,AB=AD=DC,對(duì)角線AC,BD都是黃金線,且AB<AC,CD<BD,求四邊形ABCD各個(gè)內(nèi)角的度數(shù);
(2)如圖2,點(diǎn)B是弧AC的中點(diǎn),請(qǐng)?jiān)凇袿上找出所有的點(diǎn)D,使四邊形ABCD的對(duì)角線AC是黃金線(要求:保留作圖痕跡);
(3)在黃金四邊形ABCD中,AB=BC=CD,∠BAC=30°,求∠BAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,港口A在觀測站O的正東方向,OA=4km,某船從港口A出發(fā),沿北偏東15°方向航行一段距離后到達(dá)B處,此時(shí)從觀測站O處測得該船位于北偏東60°的方向,則該船航行的距離(即AB的長)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四張編號(hào)為A,B,C,D的卡片(除編號(hào)外,其余完全相同)的正面分別寫上如圖所示正整數(shù)后,背面朝上,洗勻放好,現(xiàn)從中隨機(jī)抽取一張(不放回),再從剩下的卡片中隨機(jī)抽取一張.
(1)請(qǐng)用樹狀圖或列表的方法表示兩次抽取卡片的所有可能出現(xiàn)的結(jié)果(卡片用A,B,C,D表示);
(2)我們知道,滿足a2+b2=c2的三個(gè)正整數(shù)a,b,c成為勾股數(shù),求抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com