【題目】如圖,∠AOB的邊OA上有一動點(diǎn)P,從距離O點(diǎn)18cm的點(diǎn)M處出發(fā),沿線段MO,射線OB運(yùn)動,速度為2cm/s;動點(diǎn)Q從點(diǎn)O出發(fā),沿射線OB運(yùn)動,速度為1cm/s.P、Q同時出發(fā),設(shè)運(yùn)動時間是t(s).
(1)當(dāng)點(diǎn)P在MO上運(yùn)動時,PO= cm (用含t的代數(shù)式表示);
(2)當(dāng)點(diǎn)P在MO上運(yùn)動時,t為何值,能使OP=OQ?
(3)若點(diǎn)Q運(yùn)動到距離O點(diǎn)16cm的點(diǎn)N處停止,在點(diǎn)Q停止運(yùn)動前,點(diǎn)P能否追上點(diǎn)Q?如果能,求出t的值;如果不能,請說出理由.
【答案】(1)(18﹣2t);(2)t=6時,能使OP=OQ;(3)點(diǎn)P追上點(diǎn)Q需要18s,此時點(diǎn)Q已經(jīng)停止運(yùn)動.
【解析】
試題分析:(1)利用P點(diǎn)運(yùn)動速度以及OM的距離進(jìn)而得出答案;
(2)利用OP=OQ列出方程求出即可;
(3)利用假設(shè)追上時,求出所用時間,進(jìn)而得出答案.
解:(1)∵P點(diǎn)運(yùn)動速度為2cm/s,MO=18cm,
∴當(dāng)點(diǎn)P在MO上運(yùn)動時,PO=(18﹣2t)cm,
故答案為:(18﹣2t);
(2)當(dāng)OP=OQ時,則有18﹣2t=t,
解這個方程,得t=6,
即t=6時,能使OP=OQ;
(3)不能.理由如下:
設(shè)當(dāng)t秒時點(diǎn)P追上點(diǎn)Q,則2t=t+18,
解這個方程,得t=18,
即點(diǎn)P追上點(diǎn)Q需要18s,此時點(diǎn)Q已經(jīng)停止運(yùn)動.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級在一次廣播操比賽中,三個班的各項得分如下表:
服裝統(tǒng)一 | 動作整齊 | 動作準(zhǔn)確 | |
八(1)班 | 80 | 84 | 87 |
八(2)班 | 97 | 78 | 80 |
八(3)班 | 90 | 78 | 85 |
(1) 填空:根據(jù)表中提供的信息,在服裝統(tǒng)一方面,三個班得分的平均數(shù)是_________;在動作準(zhǔn)確方面最有優(yōu)勢的是_________班
(2) 如果服裝統(tǒng)一、動作整齊、動作準(zhǔn)確三個方面按20%、30%、50%的比例計算各班的得分,請通過計算說明哪個班的得分最高
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級全體同學(xué)參加了某項捐款活動,隨機(jī)抽查了部分同學(xué)捐款的情況統(tǒng)計如圖所示.
(1)本次共抽查學(xué)生________人,并將條形圖補(bǔ)充完整;
(2)捐款金額的眾數(shù)是________,平均數(shù)是________,中位數(shù)為________.
(3)在八年級600名學(xué)生中,捐款20元及以上(含20元)的學(xué)生估計有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對角線AC、BD交于點(diǎn)O,CE∥BD,DE∥AC.
(1)證明:四邊形OCED為菱形;
(2)若AC=4,求四邊形CODE的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把正整數(shù)1,2,3,4,……,2009排列成如圖所示的一個表
(1)用一正方形在表中隨意框住4個數(shù),把其中最小的數(shù)記為x,另三個數(shù)用含x的式子表示出來,從小到大依次是 , , 。
(2)當(dāng)被框住的4個數(shù)之和等于416時,x的值是多少?
(3)被框住的4個數(shù)之和能否等于622?如果能,請求出此時x的值;如果不能,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各組數(shù)中,結(jié)果相等的是( )
A.﹣12與(﹣1)2
B. ??
C.﹣|﹣2|與﹣(﹣2)
D.(﹣3)3與﹣33
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電子廠生產(chǎn)一種新型電子產(chǎn)品,每件制造成本為20元,試銷過程中發(fā)現(xiàn),每月銷售量y(萬件)與銷售單價x(元)之間的關(guān)系可以近似地看作一次函數(shù)y=﹣2x+100.(利潤=售價﹣制造成本)
(1)寫出每月的利潤z(萬元)與銷售單價x(元)之間的函數(shù)關(guān)系式;
(2)當(dāng)銷售單價為多少元時,廠商每月獲得的利潤為400萬元?
(3)根據(jù)相關(guān)部門規(guī)定,這種電子產(chǎn)品的銷售單價不能高于40元,如果廠商每月的制造成本不超過520萬元,那么當(dāng)銷售單價為多少元時,廠商每月獲得的利潤最大?最大利潤為多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,∠A=40°.點(diǎn)P是射線AB上一動點(diǎn)(與點(diǎn)A不重合),CE、CF分別平分∠ACP和∠DCP交射線AB于點(diǎn)E、F.
(1)求∠ECF的度數(shù);
(2)隨著點(diǎn)P的運(yùn)動,∠APC與∠AFC之間的數(shù)量關(guān)系是否改變?若不改變,請求出此數(shù)量關(guān)系;若改變,請說明理由;
(3)當(dāng)∠AEC=∠ACF時,求∠APC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com