(2010•沈陽)如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+c與x軸正半軸交于點F(16,0),與y軸正半軸交于點E(0,16),邊長為16的正方形ABCD的頂點D與原點O重合,頂點A與點E重合,頂點C與點F重合.
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖2,若正方形ABCD在平面內(nèi)運(yùn)動,并且邊BC所在的直線始終與x軸垂直,拋物線始終與邊AB交于點P且同時與邊CD交于點Q(運(yùn)動時,點P不與A,B兩點重合,點Q不與C,D兩點重合).設(shè)點A的坐標(biāo)為(m,n)(m>0).
①當(dāng)PO=PF時,分別求出點P和點Q的坐標(biāo);
②在①的基礎(chǔ)上,當(dāng)正方形ABCD左右平移時,請直接寫出m的取值范圍;
③當(dāng)n=7時,是否存在m的值使點P為AB邊的中點?若存在,請求出m的值;若不存在,請說明理由.

【答案】分析:(1)將F點的坐標(biāo)代入拋物線的解析式中,即可求出待定系數(shù)的值,由此確定該拋物線的解析式;
(2)①若PO=PF,那么P點位于OF的垂直平分線上,此時P點的橫坐標(biāo)是F點橫坐標(biāo)的一半;將其代入拋物線的解析式中,即可求出P點的坐標(biāo);易知正方形的邊長為16,根據(jù)P點的坐標(biāo)即可確定Q點的縱坐標(biāo),進(jìn)而可由拋物線的解析式確定Q點的坐標(biāo);
②在①中,求得P(8,12),Q(8,-4);當(dāng)P、A重合時,m=8;當(dāng)Q、C重合時,m=8-16;由于P、A,Q、C都不重合,所以m的取值范圍應(yīng)該是8-16<m<8;
③當(dāng)n=7時,P點的縱坐標(biāo)為7,Q點的縱坐標(biāo)為-9,根據(jù)拋物線的解析式可確定P、Q的坐標(biāo);假設(shè)P是AB的中點,根據(jù)這個條件可確定A、B、C、D四點的坐標(biāo),然后判斷P、Q是否與這四點重合,若重合則與已知矛盾,那么就不存在符合條件的m值,若不重合,所得A點的橫坐標(biāo)即為所求的m值.
解答:解:(1)由拋物線y=ax2+c經(jīng)過點E(0,16),F(xiàn)(16,0)得:

解得,(3分)
.(4分)

(2)①過點P做PG⊥x軸于點G,
∵PO=PF,
∴OG=FG,
∵F(16,0),
∴OF=16,
∴OG=×OF=×16=8,
即P點的橫坐標(biāo)為8,
∵P點在拋物線上,
∵m>0,
∴y=,
即P點的縱坐標(biāo)為12,
∴P(8,12),(6分)
∵P點的縱坐標(biāo)為12,正方形ABCD邊長是16,
∴Q點的縱坐標(biāo)為-4,
∵Q點在拋物線上,
,
,
∵m>0,
,
,
.(8分)

②8-16<m<8.(10分)

③不存在.(11分)
理由:當(dāng)n=7時,則P點的縱坐標(biāo)為7,
∵P點在拋物線上,
,
∴x1=12,x2=-12,
∵m>0
∴x2=-12(舍去)
∴x=12
∴P點坐標(biāo)為(12,7)
∵P為AB中點,
,
∴點A的坐標(biāo)是(4,7),
∴m=4,(12分)
又∵正方形ABCD邊長是16,
∴點B的坐標(biāo)是(20,7),點C的坐標(biāo)是(20,-9),
∴點Q的縱坐標(biāo)為-9,
∵Q點在拋物線上,
,
∴x1=20,x2=-20,
∵m>0,
∴x2=-20(舍去)
∴x=20,
∴Q點坐標(biāo)(20,-9),
∴點Q與點C重合,這與已知點Q不與點C重合矛盾,
∴當(dāng)n=7時,不存在這樣的m值使P為AB的邊的中點. (14分)
點評:此題是二次函數(shù)的綜合題,考查的知識點有二次函數(shù)解析式的確定、正方形的性質(zhì)、等腰三角形的性質(zhì)等,綜合性較強(qiáng),難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2010•沈陽)如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+c與x軸正半軸交于點F(16,0),與y軸正半軸交于點E(0,16),邊長為16的正方形ABCD的頂點D與原點O重合,頂點A與點E重合,頂點C與點F重合.
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖2,若正方形ABCD在平面內(nèi)運(yùn)動,并且邊BC所在的直線始終與x軸垂直,拋物線始終與邊AB交于點P且同時與邊CD交于點Q(運(yùn)動時,點P不與A,B兩點重合,點Q不與C,D兩點重合).設(shè)點A的坐標(biāo)為(m,n)(m>0).
①當(dāng)PO=PF時,分別求出點P和點Q的坐標(biāo);
②在①的基礎(chǔ)上,當(dāng)正方形ABCD左右平移時,請直接寫出m的取值范圍;
③當(dāng)n=7時,是否存在m的值使點P為AB邊的中點?若存在,請求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年遼寧省沈陽市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•沈陽)如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+c與x軸正半軸交于點F(16,0),與y軸正半軸交于點E(0,16),邊長為16的正方形ABCD的頂點D與原點O重合,頂點A與點E重合,頂點C與點F重合.
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖2,若正方形ABCD在平面內(nèi)運(yùn)動,并且邊BC所在的直線始終與x軸垂直,拋物線始終與邊AB交于點P且同時與邊CD交于點Q(運(yùn)動時,點P不與A,B兩點重合,點Q不與C,D兩點重合).設(shè)點A的坐標(biāo)為(m,n)(m>0).
①當(dāng)PO=PF時,分別求出點P和點Q的坐標(biāo);
②在①的基礎(chǔ)上,當(dāng)正方形ABCD左右平移時,請直接寫出m的取值范圍;
③當(dāng)n=7時,是否存在m的值使點P為AB邊的中點?若存在,請求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《圓》(12)(解析版) 題型:解答題

(2010•沈陽)如圖,AB是⊙O的直徑,點C在BA的延長線上,直線CD與⊙O相切于點D,弦DF⊥AB于點E,線段CD=10,連接BD.
(1)求證:∠CDE=2∠B;
(2)若BD:AB=:2,求⊙O的半徑及DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年遼寧省沈陽市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•沈陽)如圖,在?ABCD中,點E在邊BC上,BE:EC=1:2,連接AE交BD于點F,則△BFE的面積與△DFA的面積之比為   

查看答案和解析>>

同步練習(xí)冊答案