【題目】如圖,在平面直角坐標系中,點A、B的坐標分別為(4,0)、(0,2),點C為線段AB上任意一點(不與點A、B重合).CD⊥OA于點D,點E在DC的延長線上,EF⊥y軸于點F,若點C為DE中點,則四邊形ODEF的周長為_____.
【答案】8
【解析】
首先利用待定系數(shù)法求出直線AB的解析式,由點C在直線AB上設出點C的坐標為(m,-m+2),再由點C為線段DE的中點可找出點E的坐標,從而找出線段OD、DE的長度,利用ED⊥OA,EF⊥y軸,BO⊥OA可得出∠O=∠F=∠ODE=90°,從而得出四邊形ODEF為矩形,再根據(jù)矩形的周長公式即可得出結論.
解:設直線AB的解析式為y=kx+b,
將點A(4,0)、點B(0,2)代入y=kx+b中,
得:,
解得:.
∴直線AB的解析式為y=﹣x+2.
設點C的坐標為(m,﹣m+2)(0<m<4),則點E的坐標為(m,﹣m+4),
∴OD=EF=m,CD=2﹣m,DE=4﹣m,
∵ED⊥OA,EF⊥y軸,BO⊥OA,
∴∠O=∠F=∠ODE=90°,
∴四邊形ODEF為矩形.
∴C矩形ODEF=2×(OD+DE)=2×(m+4﹣m)=8.
故答案為:8.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點C在⊙O上,過點C的直線與AB的延長線交于點P, AC=PC,∠COB=2∠PCB.
(1)求證:PC是⊙O的切線;
(2)求證:BC=AB;
(3)點M是弧AB的中點,CM交AB于點N,若AB=8,求MN·MC的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市銷售一種文具,進價為5元/件.售價為6元/件時,當天的銷售量為100件.在銷售過程中發(fā)現(xiàn):售價每上漲0.5元,當天的銷售量就減少5件.設當天銷售單價統(tǒng)一為元/件(,且是按0.5元的倍數(shù)上漲),當天銷售利潤為元.
(1)求與的函數(shù)關系式(不要求寫出自變量的取值范圍);
(2)要使當天銷售利潤不低于240元,求當天銷售單價所在的范圍;
(3)若每件文具的利潤不超過,要想當天獲得利潤最大,每件文具售價為多少元?并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=﹣x+4與坐標軸分別交于點A、B,與直線y=x交于點C.在線段OA上,動點Q以每秒1個單位長度的速度從點O出發(fā)向點A做勻速運動,同時動點P從點A出發(fā)向點O做勻速運動,當點P、Q其中一點停止運動時,另一點也停止運動.分別過點P、Q作x軸的垂線,交直線AB、OC于點E、F,連接EF.若運動時間為t秒,在運動過程中四邊形PEFQ總為矩形(點P、Q重合除外).
(1)求點P運動的速度是多少?
(2)當t為多少秒時,矩形PEFQ為正方形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A、B在一直線上,小明從點A出發(fā)沿AB方向勻速前進,4秒后走到點D,此時他(CD)在某一燈光下的影長為AD,繼續(xù)沿AB方向以同樣的速度勻速前進4秒后到點F,此時他(EF)的影長為2米,然后他再沿AB方向以同樣的速度勻速前進2秒后達點H,此時他(GH)處于燈光正下方.
(1)請在圖中畫出光源O點的位置,并畫出他位于點F時在這個燈光下的影長FM(不寫畫法);
(2)求小明沿AB方向勻速前進的速度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為坐標原點,△ABO的邊AB垂直于x軸,垂足為點B,反比例函數(shù)y=(x>0)的圖象經(jīng)過AO的中點C,交AB于點D,且AD=3.
(1)設點A的坐標為(4,4)則點C的坐標為 ;
(2)若點D的坐標為(4,n).
①求反比例函數(shù)y=的表達式;
②求經(jīng)過C,D兩點的直線所對應的函數(shù)解析式;
(3)在(2)的條件下,設點E是線段CD上的動點(不與點C,D重合),過點E且平行y軸的直線l與反比例函數(shù)的圖象交于點F,求△OEF面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=4,點D是AC邊上一動點,連接BD,以AD為直徑的圓交BD于點E,則線段CE長度的最小值為___.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系xoy中,二次函數(shù)的圖象與x軸的交點為A,B,頂點為C,點D為點C關于x軸的對稱點,過點A作直線l:交BD于點E,連接BC的直線交直線l于K點.
(1)問:在四邊形ABKD內部是否存在點P,使它到四邊形ABKD四邊的距離都相等?
若存在,請求出點P的坐標;若不存在,請說明理由;
(2)若M,N分別為直線AD和直線l上的兩個動點,連結DN,NM,MK,如圖2,求DN+NM+MK和的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com