【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,過點(diǎn)B做射線BB1∥AC,動(dòng)點(diǎn)D從點(diǎn)A出發(fā)沿射線AC方向以每秒5個(gè)單位的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)E從點(diǎn)C出發(fā)沿射線AC方向以每秒3個(gè)單位的速度運(yùn)動(dòng),過點(diǎn)D作DH⊥AB于H,過點(diǎn)E作EF⊥AC交射線BB1于F,連接DF,設(shè)運(yùn)動(dòng)的時(shí)間為t秒(t>0).
(1)當(dāng)t為時(shí),AD=AB,此時(shí)DE的長度為;
(2)當(dāng)△DEF與△ACB全等時(shí),求t的值;
(3)以DH所在直線為對稱軸,線段AC經(jīng)軸對稱變換后的圖形為A′C′.
①當(dāng)t> 時(shí),設(shè)△ADA′的面積為S,直接寫出S關(guān)于t的函數(shù)關(guān)系式;
③當(dāng)線段A′C′與射線BB1有公共點(diǎn)時(shí),求t的取值范圍.
【答案】
(1)2,2
(2)解:∵∠ACB=90°,BB1∥AC,EF⊥AC,
∴四邊形BCEF是矩形,EF=BC=8,
當(dāng)AD<AE時(shí),5t<6+3t,
∴0<t<3,
若DE=AC,△ACB≌△DEF,DE=AE﹣AD=6+3t﹣5t=6﹣2t,
∴6﹣2t=6,
∴t=0,
∵t>0(不合題意,舍),
當(dāng)AD>AE時(shí),5t>6+3t,
∴t>3,
若DE=AC,△ACB≌△DEF,DE=AD﹣AE=5t﹣6﹣3t=2t﹣6,
∴2t﹣6=6,
∴t=6,
∴當(dāng)t=6時(shí),△DEF與△ACB全等.
(3)解:①如圖,
∵∠ACB=∠AHD,∠BAC=∠DAH,
∴△ABC∽△ADH,
∴ ,
∴ ,
∴AH=3t,DH=4t,
∴S△ADA'=2S△ADH=2× AH×DH=AH×DH=12t2,
②當(dāng)點(diǎn)A'落在射線BB1上的點(diǎn)B時(shí),AA'=AB=10,
∵DH⊥AB,
∴AA'=2AH=2×5t×cos∠A=6t=10,
∴t= ,
當(dāng)點(diǎn)C'落在射線BB1上時(shí),CC'∥AB,
∵BB1∥AC,
∴四邊形ACC'B為平行四邊形,
∴CC'=AB=10,
∵CC'=2CD×cos∠A=2×(5t﹣6)× = (5t﹣6),
∴t= ,
∴ ≤t≤ ,線段A'C'與射線BB1有公共點(diǎn).
【解析】解:(1)在Rt△ABC中,AC=6,BC=8,根據(jù)勾股定理得,AB= =10,
由運(yùn)動(dòng)知,AD=5t,
∵AD=AB,
∴5t=10,
∴t=2,
∴CD=AD﹣AC=10﹣6=4,CE=3t=6,
∴DE=CE﹣CD=2,
所以答案是2,2;
【考點(diǎn)精析】認(rèn)真審題,首先需要了解平行四邊形的判定(兩組對邊分別平行的四邊形是平行四邊形:兩組對邊分別相等的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對角分別相等的四邊形是平行四邊形;對角線互相平分的四邊形是平行四邊形),還要掌握軸對稱的性質(zhì)(關(guān)于某條直線對稱的兩個(gè)圖形是全等形;如果兩個(gè)圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點(diǎn)連線的垂直平分線;兩個(gè)圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點(diǎn)在對稱軸上)的相關(guān)知識才是答題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BAE+∠AED=180°,∠1=∠2,那么∠M=∠N.下面是推理過程,請你填空:
解:∵∠BAE+∠AED=180° (已知) ,
∴AB//DE( ),
∴∠BAE= ( )
又 ∵∠1=∠2(已知)
∴∠BAE-∠1= - (等式性質(zhì)),
即∠MAE=∠NEA,
∴ ∥ ( ),
∴∠M=∠N(兩直線平行,內(nèi)錯(cuò)角相等).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖直線l1的解析式為y=x+1,直線l2的解析式為y=ax+b(a≠0);這兩個(gè)圖象交于y軸上一點(diǎn)C,直線l2與x軸的交點(diǎn)B(2,0)
(1)求a、b的值;
(2)過動(dòng)點(diǎn)Q(n,0)且垂直于x軸的直線與l1、l2分別交于點(diǎn)M、N都位于x軸上方時(shí),求n的取值范圍;
(3)動(dòng)點(diǎn)P從點(diǎn)B出發(fā)沿x軸以每秒1個(gè)單位長的速度向左移動(dòng),設(shè)移動(dòng)時(shí)間為t秒,當(dāng)△PAC為等腰三角形時(shí),直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下列各題.
(1)不改變分式的值,把下列分子和分母的最高次的系數(shù)都化為正數(shù)________.
(2)不改變分式的值,把下列分子和分母的中各項(xiàng)系數(shù)都化為整數(shù)________.
(3)若分式的值是整數(shù),求整數(shù)的值.
(4)已知,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,沿∠BAC的平分線AB1折疊,剪掉重復(fù)部分;將余下部分沿∠B1A1C的平分線A1B2折疊,剪掉重復(fù)部分…將余下部分沿∠BnAnC的平分線AnBn+1折疊,點(diǎn)Bn與點(diǎn)C重合,無論折疊多少次,只要最后一次恰好重合,則稱∠BAC是△ABC的好角.
(1)若經(jīng)過n次折疊∠BAC是△ABC的好角,則∠B與∠C (設(shè)∠B>∠C)之間的等量關(guān)系為 .
(2)若一個(gè)三角形的最小角是4°,且該三角形的三個(gè)角均是此三角形的好角.請寫出符合要求三角形的另兩個(gè)角的度數(shù) . (寫出一種即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C在線段AB上,點(diǎn)M、N分別是AC、BC的中點(diǎn).
(1)若AC=9cm,CB=6cm,求線段MN的長;
(2)若C為線段AB上任一點(diǎn),滿足AC+CB=acm,其它條件不變,你能猜想MN的長度嗎?并說明理由.
(3)若C在線段AB的延長線上,且滿足AC-BC=bcm,M、N分別為AC、BC的中點(diǎn),你能猜想MN的長度嗎?請畫出圖形,并直接寫出你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,四邊形AOBC是矩形,以O(shè)為坐標(biāo)原點(diǎn),OB、OA分別在x軸、y軸上,點(diǎn)A的坐標(biāo)為(0,3),∠OAB=60°,以AB為軸對折后,C點(diǎn)落在D點(diǎn)處,則D點(diǎn)的坐標(biāo)為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)圖象經(jīng)過(-4,-9)和(3,5)兩點(diǎn).
①求一次函數(shù)解析式.
②求圖象和坐標(biāo)軸交點(diǎn)坐標(biāo).并畫出圖象.
③求圖象和坐標(biāo)軸圍成三角形面積.
④若點(diǎn)(2,a)在函數(shù)圖象上,求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com