【題目】如圖,平行四邊形ABCD的對(duì)角線AC,BD交于點(diǎn)O,△AOD是正三角形,AD=4,則平行四邊形ABCD的面積為

【答案】16
【解析】解:作DE⊥AC于E, ∴∠AED=90°.
∵△AOD是正三角形,
∴AD=DO=AO,AO=EO= AO,∠ADO=∠DAO=60°,
∴∠ADE=30°.
∵AD=4,
∴AE=2.
在Rt△ADE中,由勾股定理,得
DE=2 ,
∴S△AOD= ×4×2 =4
∵四邊形ABCD是平行四邊,
∴SAOD=SDOC=SBOC=SAOB
∴平行四邊形ABCD的面積=4×4 =16
所以答案是:16

【考點(diǎn)精析】關(guān)于本題考查的等邊三角形的性質(zhì),需要了解等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程x2﹣4x+2=0的根的情況是(
A.有兩個(gè)不相等的實(shí)數(shù)根
B.有兩個(gè)相等的實(shí)數(shù)根
C.只有一個(gè)實(shí)數(shù)根
D.沒有實(shí)數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)B,F(xiàn),C,E在直線l上(F,C之間不能直接測(cè)量),點(diǎn)A,D在l異側(cè),測(cè)得AB=DE,AC=DF,BF=EC.

(1)求證:ABC≌△DEF;

(2)指出圖中所有平行的線段,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計(jì)算中,正確的是( 。
A.2a2+3a2=5a4
B.(a﹣b)2=a2﹣b2
C.(a33=a6
D.(﹣2a23=﹣8a6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】Rt△ABC與Rt△DEF的位置如圖所示,其中AC=2,BC=6,DE=3,∠D=30°,其中,Rt△DEF沿射線CB以每秒1個(gè)單位長度的速度向右運(yùn)動(dòng),射線DE、DF與射線AB分別交于N、M兩點(diǎn),運(yùn)動(dòng)時(shí)間為t,當(dāng)點(diǎn)E運(yùn)動(dòng)到與點(diǎn)B重合時(shí)停止運(yùn)動(dòng).

(1)當(dāng)Rt△DEF在起始時(shí),求∠AMF的度數(shù);

(2)設(shè)BC的中點(diǎn)的為P,當(dāng)△PBM為等腰三角形時(shí),求t的值;

(3)若兩個(gè)三角形重疊部分的面積為S,寫出S與t的函數(shù)關(guān)系式和相應(yīng)的自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列條件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B= ∠C中,能確定△ABC是直角三角形的條件有(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,E,F(xiàn)分別是OA,OC的中點(diǎn),連接BE,DF

(1)根據(jù)題意,補(bǔ)全原形;

(2)求證:BE=DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線y=x﹣1的圖象經(jīng)過第( )象限.

A. 一、二、三 B. 一、二、四 C. 二、三、四 D. 一、三、四

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計(jì)算正確的是( 。
A.a5+a5=a10
B.﹣a6(﹣a)4=a10
C.(﹣bc)4÷(﹣bc)2=b2c2
D.(﹣ab)2a=﹣a3b2

查看答案和解析>>

同步練習(xí)冊(cè)答案